2018年2月28日水曜日

ゼロ除算(ゼロじょざん、division by zero)

NEW !
テーマ:
ゼロ除算(ゼロじょざん、division by zero)は、0で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定にまったく依存している話である。少なくとも通常の実数の体系とその算術においては、意味のある式ではない。

コンピュータなど計算機においても、ゼロ除算に対するふるまいは様々である。たとえば浮動小数点数の扱いに関する標準であるIEEE 754では、数とは異なる無限大を表現するものが結果となる。[1] しかし、浮動小数点以外の数値型(整数型など)においては多くの場合無限大に相当する値は定義されておらず、またいくつかの除算アルゴリズムの単純な実装(取尽し法など)においては無限ループに陥りかねないなど演算処理の中でも特異なふるまいとなるため、演算前にゼロ除算例外を発生させることで計算そのものを行わせないか、便宜上型が表現できる最大の数値、あるいはゼロを返すなどの特殊な処理とされる場合が多い(後述)

計算尺では、対数尺には0に相当する位置が存在しない(無限の彼方である)ため不可能である。

算数的解釈[編集]

算数レベルでは、除算は何らかの物の集合をそれぞれ同数になるように分けることで説明される。例えば、10個のリンゴを5人で分ける場合、各人は 10 ÷ 5 = 2個のリンゴを受け取ることになる。同様に、10個のリンゴを1人で分ける場合、各人は 10 ÷ 1 = 10個のリンゴを受け取る。
この考え方を使ってゼロ除算を説明できる。10個のリンゴを0人で分けるとする。各人は何個のリンゴを受け取るだろうか? 10 ÷ 0 を計算しようとしても、元の設問自体が無意味なので無意味となる。この場合、各人が受け取る個数は、0個でも、10個でも、無限個でもない。なぜなら、元々受け取るべき人はいないからである。以上のように算数レベルで考える場合、ゼロ除算は無意味または未定義となる。
ゼロ除算の未定義性を理解する別の方法として、減法の繰り返し適用という考え方がある。すなわち、余りが除数より少なくなるまで除数を繰り返し引くのである。たとえば 13 ÷ 5 を考えると、13 から 5 は 2 回引くことができ、余りは 3 となる。結果は 13 ÷ 5 = 2 あまり 3 などと記される。ゼロ除算の場合、ゼロを何度引いても余りがゼロより小さくなることはないため、無限に減法を繰り返すだけとなる。

初期の試み[編集]

628年ブラーマグプタが著した『ブラーマ・スプタ・シッダーンタ』では、0 を数として定義し、その演算結果も定義している。しかし、ゼロ除算の説明は間違っていた。彼の定義に従うと代数的不合理が生じることを簡単に証明できる。ブラーマグプタによれば、次の通りである。
「正または負の数をゼロで割ると、分母がゼロの分数となる。ゼロを正または負の数で割ると、ゼロになるか、またはゼロを分子とし有限数を分母とする分数になる。ゼロをゼロで割るとゼロになる」
830年マハーヴィーラはブラーマグプタの間違いを著書 『ガニタ・サーラ・サングラハ』で以下のように訂正しようとして失敗した。
「数はゼロで割っても変化しない」
バースカラ2世は n0 = ∞ と定義することで問題を解決しようとした。この定義はある意味では正しいが、後述の「ゼロ除算と極限」に示す問題もあり、注意深く扱わないとパラドックスに陥る。このパラドックスは近年まで考察されなかった[2]

代数学的解釈[編集]

ゼロ除算を数学的に扱う自然な方法は、まず除算を他の算術操作で定義することで得られる。整数有理数実数複素数の一般的算術規則では、ゼロ除算は未定義である。の公理体系に従う数学的体系では、ゼロ除算は未定義のままとされなければならない。その理由は、除法乗法の逆演算として定義されているためである。つまり、ab の値は、bx = a という方程式を x について解いたときに値が一意に定まる場合のみ存在する。さもなくば、値は未定義のままとされる。
b = 0 のとき、方程式 bx = a は 0x = a または単に 0 = a と書き換えられる。つまりこの場合、方程式 bx = a は a が 0 でないときには解がなく、a が 0 であれば任意の x が解となりうる。いずれにしても解は一意に定まらず、ab は未定義となる。逆に、においては ab は b がゼロでないとき常に一意に定まる。

ゼロ除算に基づく誤謬[編集]

ゼロ除算を代数学的記述に用いて、例えば以下のように 1 = 2 のような誤った証明を導くことができる。
以下を前提とする。
{\displaystyle 0\times 1=0\quad }
{\displaystyle 0\times 2=0\quad }
このとき、次が成り立つ。
{\displaystyle 0\times 1=0\times 2}
両辺をゼロ除算すると、次のようになる。
{\displaystyle \textstyle {\frac {0}{0}}\times 1={\frac {0}{0}}\times 2}
これを簡約化すると次のようになる。
{\displaystyle 1=2\quad }
この誤謬は、暗黙のうちに 00 = 1 であるかのように扱っていることから生じる。
上の証明が間違いであることは多くの人が気づくと思われるが、これをもっと巧妙に表現すると間違いを分かりにくくできる。例えば、1 を x と y に置き換え、ゼロを x − y、2 を x + y で置き換える。すると上記の証明は次のようになる。
{\displaystyle (x-y)x=x^{2}-xy=0}
{\displaystyle (x-y)(x+y)=x^{2}-y^{2}=0}
したがって、
{\displaystyle (x-y)x=(x-y)(x+y)}
両辺を x − y で割ると次のようになる。
{\displaystyle x=x+y}
x = y = 1 を代入すると、次のようになる。
{\displaystyle 1=2}

解析学的解釈[編集]

ゼロ除算と極限[編集]

関数 y = 1x のグラフ。x が 0 に近づくと、y絶対値は無限大に近づく。
直観的に a0 は ab で 正数b を 0 に漸近させたときの極限を考えることで定義されるように見える。
a が正の数の場合、次のようになる。
{\displaystyle \lim _{b\to 0+}{\frac {a}{b}}=+\infty }
a が負の数の場合、次のようになる。
{\displaystyle \lim _{b\to 0+}{\frac {a}{b}}=-\infty }
したがって、a が正のとき a0 を +∞、a が負のとき −∞ と定義できるように思われる。しかし、この定義には2つの問題点がある。
第一に、正と負の無限大実数ではない。実数の範囲内で考えたい場合、この定義には意味がない。この定義を使いたければ、何らかの形で実数を拡張する必要がある。
第二に、右側から極限に漸近するのは恣意的である。左側から漸近して極限を求めた場合、a が正の場合に a0 が −∞ となり、a が負の場合に +∞ となる。これを等式で表すと次のようになる。
{\displaystyle +\infty ={\frac {1}{0}}={\frac {1}{-0}}=-{\frac {1}{0}}=-\infty }
このように、+∞ と −∞ が等しいことになってしまい、これではあまり意味がない。これを意味のある拡張とするには、「符号のない無限大」という概念を導入するしかない。
実数に、正負の区別が有る、あるいは無い、無限大が含まれるように拡張したものが拡大実数である。アフィン拡大実数では区別が有り、射影拡大実数では区別が無い(無限遠点)。
物理学においてはブラックホールや宇宙の始まりを考察する際に質量/体積(密度)の体積が 0 となる特異点が発生するためゼロ除算による無限大発散の難問が生じている。この場合質量・体積は正であるため正の無限大への発散となる。
直接のゼロ除算以外では、三角関数の tan 90° などの計算においても、同様の問題が生じてしまう。
00 についても、極限
{\displaystyle \lim _{(a,b)\to (0,0)}{\frac {a}{b}}}
は存在しないため、うまく定義できない。さらに一般に、x が 0 に漸近すると共に f(x) も g(x) も 0 に漸近するとして、極限
{\displaystyle \lim _{x\to 0}{\frac {f(x)}{g(x)}}}
を考えても、これは任意の値に収束する可能性もあるし、収束しない可能性もある。したがって、この手法では 00 について意味のある定義は得られない。

リーマン球面[編集]

リーマン球面は、複素平面立体射影により球面に射影したものとして視覚化できる。
リーマン球面は、複素平面に無限遠点 ∞ の1点を付け加えて得られるもの C ∪ {∞} である。上記実射影直線(射影拡大実数)の複素数版とも考えられる。リーマン球面は複素解析において重要な概念であり、演算は例えば 1/0 = ∞、1/∞ = 0、などとなるが、∞+∞ や 0/0 は定義されない。

コンピュータにおけるゼロ除算[編集]

SpeedCrunchという電卓ソフトでゼロ除算を実行したときの様子。エラーが表示されている。
現在のほとんどのコンピュータでサポートされているIEEE 754 浮動小数点に関する標準規格では、全ての浮動小数点演算を定義している。ゼロ除算も例外ではなく、どういう値になるかが定義されている。IEEE 754の定義によれば、a/0 で a が正の数であれば、除算の結果は正の無限大となり、a が負の数であれば負の無限大となる。そして、a も 0 であった場合、除算結果は NaN(not a number、数でない)となる。IEEE 754 には −0 も定義されているため、0 の代わりに −0 で除算をした場合は、上述の符号が反転する。
整数のゼロ除算は通常、浮動小数点とは別に処理される。というのは整数ではゼロ除算の結果を表す方法がないためである。 多くのプロセッサは整数のゼロ除算を実行しようとすると例外を発生させる。この例外に対する対処がなされていない場合、ゼロ除算を実行しようとしたプログラムは強制終了(アボート)される。これは、ゼロ除算がエラーと解釈されるためで、エラーメッセージが表示されることも多い。
1997年、民生品の応用を研究していたアメリカ海軍タイコンデロガ級ミサイル巡洋艦ヨークタウンを改造して主機のガスタービンエンジンの制御にマイクロソフトソフトウェアを採用したが、試験航行中にデータベースのゼロ除算が発生してソフトウェアが例外を返し、結果として主機が停止、回復するまでカリブ海を2時間半ほど漂流する事態となっている[3]

ポップカルチャー[編集]

とても興味深く読みました:ゼロ除算の発見4周年超えました:
 
再生核研究所声明 418(2018.2.24):  割り算とは何ですか? ゼロ除算って何ですか - 小学生、中学生向き 回答

ここ2回に亘ってゼロ除算の解説を高校生、中学生向きに解説したので、今回はそれらの前に小学生などを意識して、割り算の意味とゼロ除算の意味を解説したい。
まず、割り算ですが、割り算を最初に考えたのは、アダムとイブで仲良くリンゴを2つに分けたことにあると楽しく表現した人がいます。 10個のリンゴを2人で仲良く分ければ、5個ずつ分けると丁度良いと考えますね。これは10割る2の意味で、割り算とは同じように分けることと考えられます。 10個のリンゴを3人で分ければ、3個ずつ分けると1個余りになると考えれば、10割る3は 3余り1です。 これらを 10/3 = 3 … 1 等と書き、 10を3で割ると商が3で余りは1と表現します。 少し、 難しく、50を13で割るとどうなるでしょうか。 少し考えて、50/13 = 3… 11 となります。 確かめるには、本当に分けた結果が50になるかを確認すればいいですね。 13が 3つあると 39で 11個残りと言っているので、確かに全体で50になるので、結果が正しいことが分かります。
割り算は難しいと 有名な言葉が有りますが、
― 割り算のできる人には、どんなことも難しくない。                     
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。                                                      
ベーダ・ヴェネラビリス(アイルランドの神学者)
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
P199より 

簡単に考える方法があります。50に13が幾つあるかを考えているので、50引く13を繰り返して、 引けるまで、引き算を 繰り返します:
50-13=27、
27-13=14、
14-13=1
1から13は引けませんから、13は3個あるとなって、割り算の商が求まります。 この手順は何時でも決まった方法で必ず答えが得られますので、分かり易く実際、感情や直感、経験、
工夫などが苦手な計算機は割り算の商を計算するときにこのようにして自動的に計算しています。繰り返し引いていくので、繰り返して除いて行きますので、割り算は除算と呼ばれ、 西欧でも中世時代そのようにして計算していたというのです。 除算の名称は素晴らしいですね。
ゼロ除算とは、ゼロで割ることを考えることですから、 50割るゼロをやって見ましょう。
50-0=50
ですから、50はゼロを引いても引いたことにはならず、50/0=0 となるのではないでしょうか?
50のところは何でも結果はゼロだということになります。 ここをそうだと言ったら、1000年や2000年を越える新しい結果であるとなりますから、 大変です。 皆さんゼロで割ってはいけないと教えられてきていて、それが現代数学の定説です。
ところが、ゼロ除算は ある自然な意味で、何でもゼロで割ればゼロであるという数学を発見して ここ4年間研究を続けていますが このような新しい考えは、 数学の基礎と私たちの空間の考えを変える必要があり、大きな影響が有ります。
そこで、次の、中学、高校生ようの解説に進むことが出来ます。
そこに、小学1年生のお友達が出てきますから、面白いですね。
再生核研究所声明 417(2018.2.21):  ゼロ除算って何ですか - 中学生、高校生向き 回答
ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。何事始めが大事ですから、この意味が分かるように 次で詳しく解説されている部分を編集して、分かり易く説明したい:

ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/

前回の声明、再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答

それ以前のこととして、今回はより基本的なことを述べたい。
12割る2は6、12割る3は4、12割る4は3、12割る6は2です。 12割る5は、商は2で余りは2で、12割る7は 商は1で余りは5です。これらを、普通、12/2=6,12/3=4,12/4=3,12/6=2 と分数で表現し、後半のように割り切れないときは 余りを表現したり、少数点以下割り算をどんどん 続けて行く場合などいろいろな考え方、表現があります。ここでは、簡単な場合として 自然数、1、2、3、4、、、、 の場合を考えましょう。
割り切れるときには、次の等式が成り立つことが大事です:
2X6=12, 3X4=12, 4X3=12, 2X6=12.
実際、12割る3を考えるとき、12の中に3が いくつ有るかと考え、3に何を掛けたら12になるかと考えるのではないでしょうか。ここには少し難しいところが有って、計算機などは決まった考えしかできないので、12から3を次々に引いて何回引けるかと考えれば、何時でも決まった考え方で割り算の商を求めることが出来ます。前半の考えは掛け算の逆を考えて、後半は引き算を何回やっての考え方ですから、前半の考えには感覚、予想などが必要であって、難しいですが、引き算の繰り返し(除いていく計算、除算)をただやればよいのですから、簡単です。計算機はこのようにして 割り算を実際行っています。
ゼロ除算とは、ゼロで割ることを考えるのですから、上記の場合、割る数、2,3,4,6のところでそれらがゼロだったらどうなるかと考えること、それがゼロ除算です。 ゼロで割ることを考えることです。
掛け算の逆で考える方法では、ゼロに何を掛けてもゼロですから、例えば、100/0は 0Xa=100 を探したいと考えても、0Xa =0 ですから、できない、存在しないということになってしまいます。そこで、現代数学では ゼロで割ってはいけないと教えられています。 数学界では2000年を超えた定説です。問題は、世の中には、分母がゼロになる公式が沢山現れて、分母がゼロになる場合が問題になります。
例えば、理想的な2つの質点間に働く、ニュートンの万有引力F は 2つの質量をm、M、万有引力定数をGとすると、距離をrとすれば
F = G mM/r^2。(r^2は rの2乗の意味)。
rをゼロに近づければ 正の無限に発散するが、rが ゼロに成れば無限大か? 無限大とは何か、数か? その意味が不明であるという点である。
そもそも足し算、掛け算の基礎はブラーマグプタ(Brahmagupta598 – 668?インド数学者天文学者によって、628に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも大事な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな意義、影響とともに明らかにされてきた。しかしながら、 ブラーマグプタは その中で 0 ÷ 0  0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の我々の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と神秘的な問題は、アインシュタインの人生最大の関心であったという言葉に象徴される。

物理学や計算機科学で ゼロ除算は大事な課題であるにも関わらず、創始者の考えを無視し、あるいは軽ろんじて、割り算は 掛け算の逆との 貧しい発想で 間違いを1300年以上も、繰り返してきたことは 実に奇妙、実に残念で、不名誉なことである。創始者は ゼロの深い意味、ゼロが 単純な算数・数学における意味を越えて、ゼロが基準を表す、不可能性を表現する、神が最も簡単なものを選択する、神の最小エネルギーの原理、すなわち、神もできれば横着したいなどの世界観を感じていて、0/0=0 を自明なもの と捉えていたものと考えられる。実際、巷で、ゼロ除算の結果や、適用例を語ると 結構な 素人の人々が 率直に理解されることが多い。ゼロ除算は至るところに見られると言っても良いほどです。
ゼロ除算を発見して議論を広く議論して間もなく、道脇愛羽さん当時6歳と緩まないネジで 有名なお父さん道脇裕氏たちは、3週間くらいで何でもゼロで割ればゼロであるとの驚嘆すべき発見に対して、理由を付けてそれは自明であると述べてきたのは 実に面白いことです。多くの専門家が、2、3年を越えても分からないと言っている経過を見ると本当に驚きです。
100/0 を100 から 0を何回引けるかと考えると、0を引いても100 は減りませんので、引いたとはいえず、減らすという意味で引ける回数はゼロ、したがって100/0=0 そして、余りが100であるとしました。 私たちは、割り算の意味を拡張して、ゼロ除算は拡張された分数の意味、割り算で 何でもゼロで割ればゼロであるという理論を数学的に確立させました。
1300年間も 創始者の考えを間違いであるとする 世界史は修正されるべきである、間違いであるとの不名誉を回復、数学の基礎の基礎である算術の確立者として、世界史上でも高く評価されるべきである。 真智への愛、良心から、熱い想いが湧いてくる。 ― 1300年も前に、創始者によって、0/0 = 0 とされてきたのに それは間違いだとして、現在も混乱しているのは、まずいのではないでしょうか?
できない不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。

内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。高級編は ohttp://okmr.yamatoblog.net/ にあります。
以 上

再生核研究所声明 417(2018.2.23):  ゼロ除算って何ですか - 中学生、高校生向き 回答

ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。何事始めが大事ですから、この意味が分かるように 次で詳しく解説されている部分を編集して、分かり易く説明したい:

ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/



再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答

ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。この意味が分かるまでは、 次には進めませんので、興味があれば、 次で解説されている最初の方を参照してください:
                                                                                                            
ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/
できない不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。

内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。
以 上


PM Narendra Modi salutes ‘science lovers’ on National Science Day

PM Narendra Modi salutes ‘science lovers’ on National Science Day

 
New Delhi: Prime Minister Narendra Modi on Wednesday extended greetings to all “science lovers” on the occasion of National Science Day.
The Prime Minister took to Twitter to send his wishes, “Greetings on #NationalScienceDay. I salute all science lovers and wish them the very best as they enhance their scientific zeal. India is extremely proud of our scientists. Had spoken about science during the #MannKiBaat last Sunday.”
Greetings on . I salute all science lovers and wish them the very best as they enhance their scientific zeal. India is extremely proud of our scientists.

Had spoken about science during the  last Sunday. https://soundcloud.com/narendramodi/india-is-the-land-of-several-great-scientists …

In his 41st edition of the Mann Ki Baat programme on February 25, PM Modi paid tribute to eminent contributors in the field of science particularly physicist C.V Raman, on whose honour the day is observed, and congratulated “the entire scientific community.”
Prime Minister Modi had also recalled other great scientists of the country who greatly contributed in the field of Mathematics, medicine, and science.
“In Mathematics, we have the glorious tradition of Baudhaya, Bhaskara, Brahmagupta and Aryabhatta. In the medical field, Sushruta and Charaka made us proud. In the field of science, Sir Jagdish Chandra Bose, Hargobind Khurana and Satyendra Nath Bose are the pride of India. Boson particles have even been named after Satyendra Nath Bose,” he said.
It was on this day that Raman discovered the phenomenon of light scattering and was also awarded Nobel Prize for this discovery which is popularly known as the ‘Raman effect’.http://www.freepressjournal.in/india/pm-narendra-modi-salutes-science-lovers-on-national-science-day/1229139

とても興味深く読みました:ゼロ除算の発見4周年を超えました:

再生核研究所声明3572017.2.17Brahmagupta の名誉回復と賞賛を求める。

再生核研究所声明 339で 次のように述べている:

世界史と人類の精神の基礎に想いを致したい。ピタゴラスは 万物は数で出来ている、表されるとして、数学の重要性を述べているが、数学は科学の基礎的な言語である。ユークリッド幾何学の大きな意味にも触れている(再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学)。しかしながら、数体系がなければ、空間も幾何学も厳密には 表現することもできないであろう。この数体系の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インド数学者天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも顕著な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな影響とともに明らかにされてきた。しかしながら、 ブラーマグプタは その中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と問題は、次のアインシュタインの言葉に象徴される:

Blackholes are where God divided by zero. I don't believe in mathematics. George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist re-
marked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1] 1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

物理学や計算機科学で ゼロ除算は大事な課題であるにも関わらず、創始者の考えを無視し、割り算は 掛け算の逆との 貧しい発想で 間違いを1300年以上も、繰り返してきたのは 実に残念で、不名誉なことである。創始者は ゼロの深い意味、ゼロが 単純な算数・数学における意味を越えて、ゼロが基準を表す、不可能性を表現する、神が最も簡単なものを選択する、神の最小エネルギーの原理、すなわち、神もできれば横着したいなどの世界観を感じていて、0/0=0 を自明なもの と捉えていたものと考えられる。実際、巷で、ゼロ除算の結果や、適用例を語ると 結構な 素人の人々が 率直に理解されることが多い。
1300年間も 創始者の結果が間違いであるとする 世界史は修正されるべきである、間違いであるとの不名誉を回復、数学の基礎の基礎である算術の確立者として、世界史上でも高く評価されるべきである。 真智の愛、良心から、厚い想いが湧いてくる。

                               以 上

追記

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt
   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf


再生核研究所声明3712017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

http://ameblo.jp/syoshinoris/theme-10006253398.html

1/0=00/0=0z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html

1/0=00/0=0z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html

1/0=00/0=0z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html

再生核研究所声明3392016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

世界史と人類の精神の基礎に想いを致したい。ピタゴラスは 万物は数で出来ている、表されるとして、数学の重要性を述べているが、数学は科学の基礎的な言語である。ユークリッド幾何学の大きな意味にも触れている(再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学)。しかしながら、数体系がなければ、空間も幾何学も厳密には 表現することもできないであろう。この数体系の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インド数学者天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも顕著な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな影響とともに明らかにされてきた。しかしながら、 ブラーマグプタはその中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとしてされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と問題は、次のアインシュタインの言葉に象徴される:

Blackholes are where God divided by zero. I don't believe in mathematics. George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist re-
marked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1] 1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
他方、人間存在の根本的な問題四苦八苦(しくはっく)、根本的な苦 四苦
·         愛別離苦(あいべつりく) - 愛する者と別離すること
·         怨憎会苦(おんぞうえく) - 怨み憎んでいる者に会うこと
·         求不得苦(ぐふとくく) - 求める物が得られないこと
·         五蘊盛苦(ごうんじょうく) - 五蘊(人間の肉体と精神)が思うがままにならないこと
の四つの苦に対する人間の在り様の根本を問うた仏教の教えは人類普遍の教えであり、命あるものの共生、共感、共鳴の精神を諭されたと理解される。人生の意義と生きることの基本を真摯に追求された教えと考えられる。アラブや西欧の神の概念に直接基づく宗教とは違った求道者、修行者の昇華された世界を見ることができ、お釈迦様は人類普遍の教えを諭されていると考える。

これら2点は、インドの誠に偉大なる、世界史、人類における文化遺産である。我々はそれらの偉大な文化を尊崇し、数理科学にも世界の問題にも大いに活かして行くべきであると考える。 数理科学においては、十分に発展し、生かされているので、仏教の教えの方は、今後世界的に広められるべきであると考える。仏教はアラブや欧米で考えられるような意味での宗教ではなく、 哲学的、学術的、修行的であり、上記宗教とは対立するものではなく、広く活かせる教えであると考える。世界の世相が悪くなっている折り、仏教は世界を救い、世界に活かせる基本的な精神を有していると考える。
ちなみに、ゼロは 空や無の概念と通じ、仏教の思想とも深く関わっていることに言及して置きたい。 いみじくも高度に発展した物理学はそのようなレベルに達していると報じられている。この観点で、歴史的に永い間、ゼロ自身の西欧社会への導入が異常に遅れていた事実と経過は 大いに気になるところである。

以 上
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt
   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research

再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか

ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:

Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
数 0 は正でも負でもなく、素数でも合成数でも単数でもない。しかし、0は偶数である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0x= 0 である。しかしx0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。

実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:

しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:

19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。

複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。

全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。

古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。

2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上

再生核研究所声明 411(2018.02.02):  ゼロ除算発見4周年を迎えて

ゼロ除算100/0=0を発見して、4周年を迎える。 相当夢中でひたすらに その真相を求めてきたが、一応の全貌が見渡せ、その基礎と展開、相当先も展望できる状況になった。論文や日本数学会、全体講演者として招待された大きな国際会議などでも発表、著書原案154ページも纏め(http://okmr.yamatoblog.net/)基礎はしっかりと確立していると考える。数学の基礎はすっかり当たり前で、具体例は700件を超え、初等数学全般への影響は思いもよらない程に甚大であると考える: 空間、初等幾何学は ユークリッド以来の基本的な変更で、無限の彼方や無限が絡む数学は全般的な修正が求められる。何とユークリッドの平行線の公理は成り立たず、すべての直線は原点を通るというが我々の数学、世界であった。y軸の勾配はゼロであり、\tan(\pi/2) =0 である。 初等数学全般の修正が求められている。
数学は、人間を超えたしっかりとした論理で組み立てられており、数学が確立しているのに今でもおかしな議論が世に横行し、世の常識が間違っているにも拘わらず、論文発表や研究がおかしな方向で行われているのは 誠に奇妙な現象であると言える。ゼロ除算から見ると数学は相当おかしく、年々間違った数学やおかしな数学が教育されている現状を思うと、研究者として良心の呵責さえ覚える。
複素解析学では、無限遠点はゼロで表されること、円の中心の鏡像は無限遠点では なくて中心自身であること、ローラン展開は孤立特異点で意味のある、有限確定値を取ることなど、基本的な間違いが存在する。微分方程式などは欠陥だらけで、誠に恥ずかしい教科書であふれていると言える。 超古典的な高木貞治氏の解析概論にも確かな欠陥が出てきた。勾配や曲率、ローラン展開、コーシーの平均値定理さえ進化できる。
ゼロ除算の歴史は、数学界の避けられない世界史上の汚点に成るばかりか、人類の愚かさの典型的な事実として、世界史上に記録されるだろう。この自覚によって、人類は大きく進化できるのではないだろうか。
そこで、我々は、これらの認知、真相の究明によって、数学界の汚点を解消、世界の文化への貢献を期待したい。
ゼロ除算の真相を明らかにして、基礎数学全般の修正を行い、ここから、人類への教育を進め、世界に貢献することを願っている。
ゼロ除算の発展には 世界史がかかっており、数学界の、社会への対応をも 世界史は見ていると感じられる。 恥の上塗りは世に多いが、数学界がそのような汚点を繰り返さないように願っている。
人の生きるは、真智への愛にある、すなわち、事実を知りたい、本当のことを知りたい、高級に言えば神の意志を知りたいということである。そこで、我々のゼロ除算についての考えは真実か否か、広く内外の関係者に意見を求めている。関係情報はどんどん公開している。
4周年、思えば、世の理解の遅れも反映して、大丈夫か、大丈夫かと自らに問い、ゼロ除算の発展よりも基礎に、基礎にと向かい、基礎固めに集中してきたと言える。それで、著書原案ができたことは、楽しく充実した時代であったと喜びに満ちて回想される。
以 上


List of division by zero:

\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum.

Saburou Saitoh, Mysterious Properties of the Point at Infinity、
arXiv:1712.09467 [math.GM]

Hiroshi Okumura and Saburou Saitoh
The Descartes circles theorem and division by zero calculus. 2017.11.14

L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

T. Matsuura and S. Saitoh,
Matrices and division by zero z/0=0,
Advances in Linear Algebra \& Matrix Theory, 2016, 6, 51-58
Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.

T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication).

T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.)

H. Michiwaki, S. Saitoh and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. 6(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

H. Michiwaki, H. Okumura and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces,
International Journal of Mathematics and Computation, 28(2017); Issue 1, 2017), 1-16.

H. Okumura, S. Saitoh and T. Matsuura, Relations of $0$ and $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017), 70-77.

S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics).

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182. (Springer) .