世界的数学者も苦戦する入試…宮本哲也氏<3>
(この記事は、2014年10月22日付「トピックス」からの転載です)
算数と数学の違いは何だと思いますか。
数学の問題には、たいていエレガントな解法というものが用意されています。でも、算数の問題にはエレガントな解法が存在しないことが多い。面倒な作業を積み重ねないと、前に進まない。これを数学的に解こうとすると破綻することが良くあります。
日本ではじめてフィールズ賞を受賞した小平邦彦氏が、ある年の開成中学の入試問題を解こうとしたところ、試験時間以内に解き終えることができなかったそうです。フィールズ賞受賞ということは、その当時日本で一番数学ができる人ということです。世界でも上位何人かに入るくらい数学ができる。それでも開成中学の入試問題が解けなかった。
問題がそこまで難しいのかというと、そうではなくて、算数には数学的手法がうまく使えない問題というのが存在するのです。本当に難しい問題をすらすら解く方法というのはありません。このことをよく頭にとどめておいてください。
面倒を乗り越えることから偉大な発見や発明
歴史的な偉大な発見や発明は、気が遠くなるほど地道な作業の積み重ねで生まれます。
キュリー夫人はラジウムの抽出で、女性で始めてノーベル賞を受賞しました。結果だけ見るとすごいな、天才だと言いたくなりますが、そのための実践は気が遠くなるほど過酷で重労働でした。鉱山から出る廃棄物を大きな鍋で煮込んで抽出しようとした。最終的には11トンの鉱石くずを煮込んだそうです。その時間40か月。思いつきだけでやれることではありません。
どうしてそういうことを成し遂げることができたのか。興味があるからです。興味がないことには集中できない。
発明王エジソンは生涯に5000回の実験を行ったと言われています。エジソンはきっぱりこう言い切ります。
「私は実験に失敗したことは、ただの一度もない」。実験というものは、ほとんどが失敗に終わります。でもエジソンにとっては、こうすればうまくいかないということが分かったから、実験は失敗ではないのです。
算数の問題を延々書き出すことによって解こうとしている子どもは、過去の偉大な科学者や発明家と同じことをしています。だから決して邪魔をしてはいけません。邪魔をする事は、わが子の才能の芽を摘み取ることになります。(続く、構成・メディア局編集部 小倉剛)
プロフィル | |
---|---|
宮本 哲也(みやもと・てつや) | |
早稲田大学第一文学部卒業後、当時日本一の進学塾だったTAPに入社。SAPIX横浜初代教室長を経て、1993年、横浜に宮本算数教室設立。2009年に教室を東京に移し、今日に至る。2006年に出した「賢くなるパズル」(学研)はシリーズトータルで220万部を越えるベストセラーに。「賢くなるパズル」のメインである「計算ブロック」は英名KenKenで、世界10か国で翻訳出版されていて、読売新聞、NewYorkTimesなど国内外の多くの新聞、雑誌に連載されている。2015年から活動の拠点をアメリカ・ニューヨークに移す予定。 |
2017年09月08日 09時30分 Copyright © The Yomiuri Shimbun
とても興味深く読みました:
再生核研究所声明329(2016.10.31) 大学入試の在り様について ― 現実と負担の視点から
近年、センター試験、大学受験制度のいろいろ改革が考えられていることは、大学入試が教育界に大きな影響を与え、さらに、児童、生徒の人間形成上でも大きな影響を与える事実から、絶えざる改革は歓迎されるべきことである。これらの課題には永遠の問題を内在させているという意味で、より良い方法を模索して行くべきである。特に在り様を固定化すれば、必ず弊害が出てくる観点にも気を付けたい。入試の在り様はそのように大きな問題であるから、ここでは、主に、大学側、中規模の大学の試験業務を行う立場から、試験関係の業務軽減の立場の視点から、入試の在り様の議論の際に 気を付けて欲しい観点として 意見表明しておきたい。
共通試験やセンター試験後の特徴は 入試を2回行うことで、入試業務が増大し、他の様々な入試と法人化後はさらに、研究・教育業務以外の業務が極端に増大して、年中振り回されるような雰囲気に大学がなってしまったことである。近年、ノーベル賞受賞者が増大している状況からも分かるように日本の学術レベルの高度化は高く評価されるが、それは、20年、30年前の体制の成果である点を忘れるべきではないのではないだろうか。近年大学の環境の悪化はひどいもの、惨憺たるもので、憂慮している。時間的、資金的余裕を取り戻し、教育・研究に楽しみながら、当たれるような大学の在り様を志向したい。
入試は一身上の大事であり、その判定に携わる者の心理的な圧迫は大きく、大学教員の最も嫌な仕事に当たるのではないだろうか。 そのような業務を繰り返されては、教育・研究どころではない心理状態になってしまう。
入試の原理は、人間の能力は簡単に評価できるものではないと考え、入試は便法として簡素化すべきである。ある種の基準で輪切りにするような在り様も良くなく、ある程度のばらまきも人材の配置、多様化の精神で大事ではないだろうか。― 同じような人を過剰に集めれば、そのような組織は変な組織になるのではないだろうか。― この精神は尊敬する人物の言葉として印象深いが、富士山型より峯が乱立する八ヶ岳のような在りよう が良いと表現される。
他方、児童・生徒の立場に立てば、永い、過剰な受験勉強は修行の面があっても、やり過ぎ、不適当な学習の集中しすぎで、教育本来の理念からの乖離は、相当に広く認識されている状況ではないだろうか。
例えばポルトガルでは、大学入試業務は、高校で全国レベルの試験を行い、大学は提出された書類で選考するだけであるから、入試業務が殆どなく、大学は入試業務から解放されていると言える。― さらに、例を挙げると8月1ヶ月間は大学閉鎖、8月は大学の暦に無く、7年目毎、1年間のサバーティカルライトで一切業務無しであるから、凄い。
そのような観点からすると、日本でも主な入試は各大学ではせいぜい年1回くらいに限るべきではないだろうか。入試業務の軽減化、縮小化を強く求めたい。
具体的には、センター試験作成機関を活かして、各大学で行う2次試験の在り様を検討すべきではないだろうか。論説・記述方式・面接など問題とされているが、採点する立場からすれば、評価は難しく、荷重な業務であるから、センター試験問題の作成において、大いに工夫を考えての対応が良いのではないだろうか。 センター試験が細々とした知識の寄せ集めや、パターン化した問題解きの問題にならないような注意が大事ではないだろうか。時間に追われるような在り様も問題ではないだろうか。これらに関しては、問題を精選したり、試験時間を十分伸ばすことも考えられる。知識より考える力、創造性などをみる試験の在り様を考えて行きたい。当然、入試とは何かと関係者は、絶えず問うべきである。
論説・記述方式の客観的な評価は難しく、本質的な問題を抱えていると考えられる。そのような観点から面接で差を付けるようなことは 実際にはできず、機能しないのではないだろうか。― 他方、人事採用などでは、面接は大きな影響を与えていると考えられる。これらの差は、評価を受けるものの数、人数が影響しているのではないだろうか。― この節の問題は、言わば感覚的な評価を取り入れるべきか否かという問題であるが、画一的に数字で評価が出る方式に対して、入試に柔軟性とある種のランダム性、多様性を取り入れる観点から、検討するに値する考えとも思われるが、評価は極端に荷重になる。
ここで述べようとしたことは、入試業務の軽減化、入試の簡素化、入試があまりにも細かい評価をしないような多様な視点を持ちたいということである。教育は大事であるから、再生核研究所では、次のようにいろいろ意見を表明してきた。ここで述べられたことの逆のような見解もあるが、 それは、入試の在り様の問題には、いろいろな視点、在りようがあり、全体的で総合的なバランスが 大事であるということである。
再生核研究所声明4: 競争社会から個性を活かす社会に
再生核研究所声明9: 天才教育の必要性を訴える
再生核研究所声明17: 教育界の改革を求める
再生核研究所声明20: 大学入試センター試験の見直しを提案する
再生核研究所声明 44: 梅の木学問と檜学問-日本の研究者育成についての危惧
再生核研究所声明 60: 非凡な才能を持つ少年・少女育成研究会
再生核研究所声明76(2012.2.16): 教育における心得 ― 教育原理
再生核研究所声明90(2012.5.18): 日本の大学受験体制についての一考察
再生核研究所声明91(2012.5.20): 創造性についての一考察
再生核研究所声明147(2013.12.27) 創造性についての 第二考察
再生核研究所声明187(2014.12.8) 工科系における数学教育について
再生核研究所声明198(2015.1.14) 計算機と人間の違い,そしてそれらの愚かさについて
再生核研究所声明210(2015.2.21) 大学入試ミスにおける対応について
再生核研究所声明327(2016.10.) 数学教育についての提案
以 上
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更は かつて無かった事である。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象、接線などの新しい性質、解析幾何学との美しい関係と調和。すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること。行列式と破壊現象の美しい関係など。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時、微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法で統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
以 上
追記:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory, 6, 51-58.
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdfDOI:10.12732/ijam.v27i2.9.
再生核研究所声明335(2016.11.28) ゼロ除算における状況
ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更は かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
4. 孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること; \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線や法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。
再生核研究所声明 373 (2017.7.17): 高木貞治 「解析概論」の改変構想
日本には、解析学の基礎全般について解説された 解析学の聖書とみなされるような古典的な名著がある。現在手にしているのは、1963年1月発行の改訂第3版のものであるが、学生時代から、何と54年も近くに存在していて、今でも参照している。
日本の学部教育における、微積分学の模範となり、その後の解析学のカリキュラムの基礎、標準を与えていると考えられる。多くの理系専攻者の思い出の1冊ではないだろうか。476ページの大判も大きな存在感を持ち、風格も十分である。美しい文体や記述は多くの人に感銘を与えてきている。
誠に畏れ多いことであるが、この完全性を有する古典的な著書内容に ある大きな進化させるべき数学があり、数学をより美しく完全にすべき構想を述べたい。誠に畏れ多いことであるが、数学の発展には必然性があり、数学の姿は人類の思惑や予断や偏見を越えて実在する存在であり:
下記構想は 既に必然的であると考える:
まず、結果位置づけが明瞭である陰関数についてである。陰関数の存在定理における陰関数の陽な表現定理、理論が確立された。このような理論、結果は数学として基本的であり内容も美しいので、解析学で広く採用、触れられるべきであると考えられる。骨格は次の著書の本文と付録にコンパクトに述べられている:
S. Saitoh and Y. Sawano, Theory of Reproducing Kernels and Applications, Developments in Mathematics {\bf 44}, Springer (2016).
次はゼロ除算の発見による影響である。立体射影における修正、無限遠点がゼロで表されること、円の中心の円に関する鏡像が円の中心であること。これら古典的な数学に間違いがあり、根本的な修正が要求される。基本は、下記の状況からの修正、補充、完全化である:
1. ゼロ除算未定義は自然な意味での拡張で、可能で任意の複素数zに対してz/0=0であること。
もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学等の多くの公式における分数は、拡張された分数の意味を有していることが広く認められた。ゼロ除算を含む簡単で、自然な体の構造が与えられている。
2. いわゆる複素解析学で無限遠点は1/0=0で、複素数0で表されること。
3. 円に関する中心の鏡像は無限遠点ではなくて、中心それ自身であること。
これら超古典的な結果に間違いが存在する。
4. 孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。
5. x,y 直交座標系で y軸の勾配はゼロであること; \tan (\pi/2) =0.
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線や法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、そこで意味のある広い世界。多くの応用。
10. 従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。多くの公式の変更。
11. 微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有すること、微分係数が意味をもつことから。微分方程式論には大きな欠陥が存在する。
12. 図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13. 確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による世界の構造の統一的な説明。物理学などへの応用。
15.\log 0 =0 の発見と関連する数学。
微積分学、線形代数学、解析幾何学、初等幾何学、微分方程式 複素解析などは相当な修正が要求されていると考えられる。それを上手く解析概論に活かしての改変は 既に歴史的必然であると考えられる。
以 上
0 件のコメント:
コメントを投稿