2017年9月29日金曜日

Zero’s journey from nothing to everything

Zero’s journey from nothing to everything

he biggest paradox in the history of our planet is a number that, at first glance, depicts nothing—zero. In fact, it is this seemingly insignificant digit that adds meaning to everything. When Soulveda tried to trace its fascinating history, we found that both as a number and a concept, zero is a perplexing thought.
As a concept, zero balances itself precariously on metaphysics. So leaving the concept aside for now, let’s just take a look at the number.
What is zero?
Zero is an abstract mathematical quality. It is not ‘nothing’ when it comes to math. Instead, it is a quantity that can be manipulated to make sense. While dealing with the number is simpler as compared to the concept, it can still leave you rather dumbfounded. How can something that adds value to other numbers be used to denote nothing at the same time?
“Zero was actually a leap in the history of mathematics. In the beginning, we may have needed to understand things like ‘five sheep’, ‘five cows’, or ‘five sacks of grain’, but eventually, the idea of ‘five’ became separate from what it was counting, and we developed the idea of ‘five’ as something in its own right,” says mathematician and public speaker Dr James Grime.
“Zero was more difficult. Zero means nothing—and how can nothing be something? This required another level of abstraction, more so than other numbers, but mathematics is all about abstraction. By abstraction we are no longer limited to certain problems about ‘sheep’, ‘cows’ or ‘grain’, but can use the same ideas to solve more problems. That is a good description of mathematics itself,” he adds.
Zero might be a mathematician’s delight but it wasn’t accepted in the real world so easily.
        
So how did ‘nothing’ become a number?
While the Sumerians were the first to develop the counting system, zero was invented independently by the Babylonians, Mayans and the Indians. It is believed that Indian mathematicians—astronomer Brahmagupta in particular—took the concept of nothingness and converted it into a number, calling it Shunya (void). They also wrote down the mathematical rules for it. The shape wasn’t an oval back then. Instead, dots were used underneath numbers to signify zeros.
Zero made its way into the Arab empire through India. Now being called Sifr, it was used by Al-Khowarizmi (the inventor of algebra). It ultimately reached Europe with the conquest of Spain by the Moors, which is when Italian mathematician Fibonacci started using it for equations. His methods were soon adopted by bankers and traders.
The earliest record of the number zero is a Cambodian inscription, popularly known as K-127. Dating back to 683 AD, it was lost during the Khmer Rouge reign of terror. However, its oldest record in India (876 AD) is on a wall of the rock-cut Chaturbhuj temple in Gwalior.
The twist in the tale
Zero might be a mathematician’s delight but it wasn’t accepted in the real world so easily. Back in the 16th and 17th centuries, the world followed the Aristotelian doctrine which proved the existence of God. The doctrine didn’t acknowledge the void and infinity, and so, didn’t acknowledge the number zero. Christianity tied with Aristotle’s view and questioning him meant questioning the existence of god. It is said that zero took the centre stage of renaissance during this period as trade demanded it and the church rejected it.
If the digit hasn’t managed to perplex you yet, try this: Divide six apples between three people. The basic calculation would be 6/3=2, so two apples each.
Now, try dividing six apples among six people. So, 6/6=1. One apple each.
Now divide six apples between zero people. First of all, the question doesn’t make sense. But zero is a number and we should be able to divide by it like any other number. The answer to this is a contradiction as 6/0=? Undefined.
And so, zero is fine by itself, but the moment it comes to dividing it, all hell breaks loose.https://www.soulveda.com/articles/Zeros-journey-from-nothing-to-everything

とても興味深く読みました:
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 380:   What is the zero?\\
(2017.8.21)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
 }
\date{\today}
\maketitle

\section{What is the zero?}

The zero $0$ as the complex number or real number is given clearly by the axions by the complex number field and real number field.

For this fundamental idea, we should consider the {\bf Yamada field}  containing the division by zero. The Yamada field and the division by zero calculus will arrange our mathematics, beautifully and completely; this will be our natural and complete mathematics.
\medskip

\section{ Double natures of the zero $z=0$}

The zero point $z=0$ represents the double natures; one is the origin at the starting point and another one is a representation of the point at infinity. One typical and simple example is given by $e^0 = 1,0$, two values. {\bf God loves  two}.

\section{Standard value}
\medskip

The zero is a center and stand point (or bases, a standard value) of the coordinates - here we will consider our situation on the complex or real 2 dimensional spaces. By stereographic
 projection mapping or the Yamada field, the point at infinity $1/0$ is represented by zero. The origin of the coordinates and the point at infinity correspond each other.

As the standard value, for the point $\omega_n = \exp \left(\frac{\pi}{n}i\right)$  on the unit circle $|z|=1$ on the complex $z$-plane is,  for $n = 0$:
\begin{equation}
\omega_0 = \exp \left(\frac{\pi}{0}i\right)=1, \quad  \frac{\pi}{0} =0.
\end{equation}
For the mean value
$$
M_n  = \frac{x_1  +  x_2  +... + x_n}{n},
$$
we have
$$
M_0 = 0 = \frac{0}{0}.
$$
\medskip

\section{ Fruitful world}
\medskip

For example, for very and very general partial differential equations, if the coefficients or terms are zero, then we have some simple differential equations and the extreme case is all the terms are zero; that is, we have trivial equations $0=0$; then its solution is zero. When we consider the converse, we see that the zero world is a  fruitful one and it means some vanishing world. Recall Yamane phenomena (\cite{kmsy}), the vanishing result is very simple zero, however, it is the result from some fruitful world. Sometimes, zero means void or nothing world, however, it will show {\bf some changes} as in the Yamane phenomena.

\section{From $0$ to $0$; $0$ means all and all are $0$}
\medskip

As we see from our life figure (\cite{osm}), a story starts from the zero and ends with the zero. This will mean that $0$ means all and all are $0$. The zero is a {\bf mother} or an {\bf origin} of all.
\medskip

\section{ Impossibility}
\medskip
As the solution of the simplest equation
\begin{equation}
ax =b
\end{equation}
we have $x=0$ for $a=0, b\ne 0$ as the standard value, or the Moore-Penrose generalized inverse. This will mean in a sense, the solution does not exist; to solve the equation (6.1) is impossible.
We saw for different parallel lines or different parallel planes, their common points are the origin. Certainly they have the common points of the point at infinity and the point at infinity is represented by zero. However, we can understand also that they have no solutions, no common points, because the point at infinity is an ideal point.

Of course. we can consider the equation (6.1)  even the case $a=b=0$ and then we have the solution $x=0$ as we stated.

We will consider the simple differential equation
\begin{equation}
m\frac{d^2x}{dt^2} =0,  m\frac{d^2y}{dt^2} =-mg
\end{equation}
with the initial conditions, at $t =0$
\begin{equation}
 \frac{dx}{dt} = v_0 \cos \alpha , \frac{d^2x}{dt^2} = \frac{d^2y}{dt^2}=0.
\end{equation}
Then,  the highest high $h$, arriving time $t$, the distance $d$ from the starting point at the origin to the point $y(2t) =0$ are given by
\begin{equation}
h = \frac{v_0 \sin^2 \alpha}{2g},  d= \frac{v_0\sin \alpha}{g}
\end{equation}
and
\begin{equation}
t= \frac{v_0 \sin \alpha}{g}.
\end{equation}
For the case $g=0$, we have $h=d =t=0$. We considered the case that they are the infinity; however, our mathematics means zero, which shows impossibility.

These phenomena were looked many cases on the universe; it seems that {\bf God does not like the infinity}.

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
H. Michiwaki, S. Saitoh,  and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$, Advances in Linear Algebra
\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt 

\bibitem{mos}
H.  Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
 International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 

\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? -  the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

\bibitem{ann326}
 Announcement 326 (2016.10.17): The division by zero z/0=0 - its impact to human beings through education and research.

 \bibitem{ann352}
Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

\bibitem{ann354}
Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? -- relations of $0$ and infinity.

\bibitem{362}
Announcement 362(2017.5.5):   Discovery of the division by zero as
$0/0=1/0=z/0=0$.


\end{thebibliography}

\end{document}

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi
http://okmr.yamatoblog.net/

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
https://sites.google.com/site/sandrapinelas/icddea-2017

2017.8.21.06:37

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

                                                1/0=0、0/0=0、z/0=0


1/0=0、0/0=0、z/0=0


0 件のコメント:

コメントを投稿