量子世界中 波函数到底是数学描述还是实体(上)
量子力学的发展已有百年历程,但身为其理论核心之一的波函数,其本质到底是什么,却依然是百年未解的谜团。波函数理论已经衍生出诸如激光、半导体和核能等高新技术,深刻变革了人类生活方式。但多年来,物理学家们提出各种关于波函数的假设和诠释,并设计出各种实验进行验证,却始终没有达成共识。其中最主流声音认为,波函数仅是一种数学描述,用来计算微观物体在某处出现的概率。但最近清华大学物理学教授龙桂鲁带领的团队,提出完全不同的全新观点,认为波函数是微观物体的真实存在。本文将分上下篇,为读者梳理这些诠释和实验的来龙去脉。
——编者按
有那么一个世界:崂山道士的穿墙术成为可能,你脚下的大地也不再坚实,甚至世界的客观实在性也消失了,一切都要用概率来解释。这就是量子力学的世界。
不同于我们日常感知到的宏观世界,量子力学所描绘的是微观世界。量子力学的理论核心之一就是利用波函数来描述微观物体的量子状态。然而,尽管量子力学已有百年的发展历程, 但是波函数的本质是什么,依然是一个悬而未决的谜团。近日,清华大学龙桂鲁教授以第一和通讯作者身份,在2018年第3期《中国科学:物理学 力学 天文学(英文版)》上发表的一项研究,为我们揭开了波函数的神秘面纱。
双缝实验 量子世界最早展示的怪事之一
首先来看看量子世界最早给我们展示的一件怪事,那就是著名的双缝实验。如果有一只大黄鸭在水池里上下摆动,引发周期性的涟漪向外散去。一段距离外,波纹碰上了一道中间有一条缝的挡板,同时,在挡板的后面,摆设侦测屏用来记录通过缝隙的波的数据。波在穿过缝隙之后,开始向四周发散波动,在侦测屏上会记录一条与缝隙直线相对的明亮条纹。
那如果水波碰到两条缝隙会产生什么样的效果呢?我们在挡板上再加一条缝隙,结果发生了不一样的事情:穿过两条缝隙的波纹开始相互叠加,在侦测屏上形成了一系列明、暗交替的条纹,而这种漂亮的图案被称为“干涉图”。
“频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,而且振动加强的区域和振动减弱的区域在空间上交替排列。这种现象叫做波的干涉。”龙桂鲁教授告诉科技日报记者。
之所以会形成一系列明、暗交替的干涉图,是因为在某些地方,一个缝隙波纹的波峰刚好在另一个缝隙波纹的波峰上,从而导致更剧烈的高峰,同时,如果是两个波谷叠加则会导致更剧烈的下沉,这种现象被称做“相长干涉”。但当一个波的波峰与另一个的波谷相遇时,它们相互抵消,水面恢复平静,这是“相消干涉”。
“任何类型的波都应该会产生相似的干涉图,比如水波、声波还有光波等。”龙桂鲁说。
干涉条纹 物理学最疯狂实验结果之一
英国物理学家托马斯·杨在1801年首次观察到了光的双缝干涉,一束光经过两条很窄的缝隙后产生了数条明暗条纹,屏幕上交替出现相长和相消干涉的区域。
我们知道光波是由大量的“光子”或者“光量子”组成的,在强光的情况下,光就是一束电磁波。因此,当一束光穿过两个缝隙时,在缝后就会相互干涉,进而形成干涉条纹。
但是在这里,我们将看到物理学中最疯狂的实验结果之一。我们每次只发射一个光子,已排除了两个光子的相互影响。然而,在这种情况下,经过长时间的积累,干涉条纹依然会出现。每个光子到达屏幕时,只产生一个亮点。第一个光子在屏幕上一个特定位置被检测到,第二个、第三个以及第四个也一样,每一个光子都将在屏幕上产生一个亮点,表现出粒子的特性。但如果不断发射单个的光子,在发射足够多的单个光子后,这些光子在屏幕上就形成了干涉条纹的图案。
虽然我们不知道每个光子会落在屏幕上哪一点,也不知道下一个光子会落在哪,然而每个光子在落向屏幕时肯定是干涉条纹亮点的地方,不会落在干涉暗点的地方, 这样最终呈现出干涉条纹。
光子并不是唯一这样做的粒子,发射单个电子穿过一对缝隙,它也会在屏幕上一点处落下,发射许多的电子后,会形成同样的干涉条纹,甚至用包含有几千个原子、电子、原子核组成的大分子做双狭缝实验,也能观察到这一奇怪的现象。
此时,每个光子、电子或原子经过双狭缝时表现出波的干涉性质,这表现出微观粒子的波动性,而在屏幕上我们看到的只是一个亮点,又表现出粒子性。我们将微观粒子的这种既有波动性又有粒子性的奇妙性质,叫做波粒二象性。
多家诠释 对波函数实质的不同描述
量子力学把描述微观粒子状态的函数称为波函数。双缝实验中,在实验的两端我们知道粒子的位置,粒子从我们放单光子激光器或电子枪的位置开始运动,并在屏幕上一个确定位置被探测,所以粒子似乎在两端更加类粒,而表现出的干涉在中间是类似波动的。那么光子从发射到探测究竟经历了什么样的过程?波函数起了什么样的作用?这就涉及到量子力学的基本问题:波函数的实质是什么?现在多种关于波函数的诠释,对这个过程进行了不同的描述。
哥本哈根概率波诠释
波恩、海森堡和玻尔所支持的哥本哈根诠释,是现在的主流派。“哥本哈根诠释认为波函数没有物理本质,仅是一种数学描述, 用来计算微观物体在某一处出现的概率,只要计算结果与实验结果相符即可。”龙桂鲁说道。
哥本哈根诠释中,对微观粒子进行测量时,微观粒子由多种可能性的迭加态转换到一个特定的本征态,体系的状态转化瞬时发生,这称作“波函数坍缩”。粒子具体转换到哪一个状态是完全随机的。
德布罗意导航波诠释
导航波理论最早在1927年由法国理论物理学家德布罗意提出。美国物理学家玻姆在1952年开始接手,一直研究到1992年离世。因此该理论也被称为德布罗意—玻姆理论。“德布罗意导航波诠释认为波函数就是一个引导波,粒子按照这个波函数的引导走,也就是说粒子行走的位置是被一个波函数引导好的。”龙桂鲁说道。
在德布罗意—玻姆理论中,电子始终拥有确定的位置,即便该位置无法被观察者察觉。电子的位置受到导航波的引导。一个电子只能通过一条缝隙,但导航波可以同时穿过两条缝隙。导航波的干涉产生了侦测屏上的干涉图。
埃弗莱特多世界诠释
多世界理论由美国物理学家休·埃弗莱特提出。龙桂鲁介绍,多世界理论认为当粒子经过双缝后,会出现两个不同的世界,在其中一个世界里粒子穿过了左边的缝隙,而在另一个世界里粒子则通过了右边的缝隙。波函数不需要“坍缩”,去随机选择左还是右,事实上两种可能都发生了。只不过它表现为两个世界:生活在一个世界中的人们发现在他们那里粒子通过了左边的缝隙,而生活在另一个世界的人们观察到的粒子则在右边。
也就是说,粒子穿过双缝的一瞬间产生了多个平行宇宙,每个宇宙对应一种可能性。由于我们只是恰好生活在其中一个平行宇宙中,所以只观察到了一种结果。http://news.sina.com.cn/o/2018-01-18/doc-ifyquixe3496521.shtml
とても興味深く読みました:
再生核研究所声明 406(2018.1.8): アジア不戦条約の提案を ― 批准を ― 丸丸お得な考え、方法
ユークリッド以来、2000年以上我々は間違った空間の認識をし、1300年以上ゼロ除算は不可能であるとの おかしな数学をしていたが、それらが明らかにされた現在、人類の愚かさを知らされて 世界を見ると、誠に動物以下の人間の存在を思い知らされる。― 実は平行線は存在せず、すべての直線は原点を通っていた。実は、1/0=0/0=z/0= tan(pi/2)=0 だった。愚かな争いを続けてきた恥ずかしい世界史。
自国の安全は大事だと、軍拡に走れば、相手は必ず、反作用で応え、軍拡競争は切りがない、これは自明の理である。尖閣諸島で、暗黙の諒解を破って相手を傷つけ、勝手に国有化宣言したら、普通は フォークランド紛争のように、これは宣戦布告のようなものであるから、軍事占領するのが道理であるが、相手の弱味を突いて、得をしたかと思えば、警戒に膨大な経費をかけ、軍事費を増大させる羽目に追い込まれ、結局アジアの愚か者の道(再生核研究所声明 49:アジアの愚か者、アジアの野蛮性)を進んでいる。一発でもロケットを攻撃的に発射すれば、自国は吹っ飛んでしまう現実も見えず、おかしな言動を繰り返している奇妙な国も 未だに存在しているようである。そんなに愚かな動物は居るだろうか。
そこで、ちょっと賢くなって、アジア不戦条約を提案、アジアのいかなる国も自国の軍隊をアジアの国に出さない、攻撃しない、誓いをしたら如何であろうか。そして、軍事費は拡大させず、縮小する方向で努力することを申し合わせる。提案国日本は、核武装すべきところ、せず、 憲法改正すべきところ せず、条約の精神を尊重してともにしないとする。
人類は 宇宙の大きさや将来、初期を考察していたり、美しい文化を有しているのだから、闘争本能丸出しの世界から、公正の原則に従って、相手の立場に思いを致し、明るい、楽しい世界の建設に目を向けるべきである。過去志向ではなくて、恥ずかしい世界史を思い直して、人間らしい世界史を築いていこうではないか。
膨大な軍事費、エネルギーを楽しい方に向けようではないか。- これ、当たり前のことではないだろうか。恥ずかしい世界史、人間の性、そろそろ卒業して、少し、賢くなろうではないか。
これらは、ゼロ除算の間違いと同様、当たり前に見える。
以 上
再生核研究所声明 405(2017.12.31): ゼロ除算が拓いた幾何学の現象 ― 堪らなく楽しい新奇な現象 - デカルトの円定理から
図と式の表現が表しにくいので 簡単に参照されるサイトhttps://arxiv.org/abs/1711.04961
を挙げて その中の図と式を参照して頂いて、ゼロ除算が如何に面白いかを解説したい。
まず、始めにデカルトの円定理と呼ばれる美しい定理を参照して下さい。3つの円が外接するときに、それらに内接したり、外接する円の半径の間の関係を確立した定理です。
式は美しいのですが、表現で4つの半径は、完全に対称になっていることに気づけばさらに 美しさを深く理解できます。
論文の発想は、そもそも、点や直線は円の特別な場合と見なせるという数学を想起して、デカルトの円定理で述べた基の3つの円を 点や直線に置き換えた場合にも成り立つかと問題にしました。 点は半径ゼロの円ですが、直線も半径ゼロの円だということはゼロ除算の結果導かれた発見です。すると、デカルトの円定理の式で、1/0 が出てきますが、それらはゼロと解釈すれば 良いとなります。それで、2つが円で、もう一つが共通接線である場合を考えると、図1-2のようですが、きれいに成り立っていることが分かります。 この辺の定理、事実は和算の得意とする分野で、デカルトの円定理も含めて和算でも広く知られていたということです。3つの円が、点や直線になった場合をすべて考えてみて何時でも成り立てば、デカルトの円定理は 一層美しいと言えます。 あらゆる場合を考えるのですが、2つが円で、一つが点の場合、それらに接する円は存在しないようですので、その場合デカルトの円定理は成り立たないようにみえます。
そこで、点では成り立たないので、小さな円の場合を考えて、その円を点にした場合にどうなるかを考えてみました。どんな小さな円でもデカルトの円定理は成り立っていますから、その小さな円の半径がゼロに近づいた場合を 考えてみるとどうなるかと考えたくなります。
数学的に厳格に議論するために、3つの円と内接円(外接円)をきちんと方程式で書いて議論しました。 円を点にするとき、 円の表現は孤立特異点を有していて、そこでは考えられないというのが 現代数学です。 ゼロ分の式はゼロのところで考えられないからです。 例えば、定理7の円の方程式で、z = 1,-1 の場合が考えられる。そこで、意味のある図形が出てくる。 ゼロ除算算法では孤立特異点で有限確定値を与えることができますので、今まで考えられなかった特異点で考えみました。― 無限の彼方が、特異点に成る場合も多い。その結果、驚嘆すべきことが起きていることが分かりました。(この辺の記述は厳密な表現より情念に思いを入れました)。
その特異点から、点円原点と、赤い円と青い円が出て来ることが分かりました。点がこれらの3つに分かれて出てきたという実に面白い現象です。 原点の場合にはデカルトの定理が成り立ちませんが、赤い円では、何とデカルトの円定理が成り立っていることが、ゼロ除算算法での計算の結果から確認できます。 青い円は美しい状況に置かれた円ですが、それは点に近づけた円が、突然、元の2つの円に外接する、しかもちょうどそれらの円を直径にする円に変形したと解釈すると、ちょうど内接する円が 緑の円で、デカルトの定理が成り立っているという、驚嘆すべき現象です。
点に成って定理が成り立たない場面で、点が突然変異を起こして定理をそのまま成り立たせている現象が現れたと発想すると、この現象は世の一般的な現象における新規な現象として注目すべきではないでしょうか。 見かけ上成り立たない場合、そこが変形して成り立たせる世界が存在する。 ― ものは燃焼で変形する、変形以前のあるものは変形してもそのまま、引き継がれている。意味深長では ないだろうか。― 山根現象を想起して下さい。 ― これは、運動エネルギーが一定であったものが ある時、物質は突然消えて、物質は消えて運動エネルギーが熱エネルギーに変化する現象を表しています。
赤い円は、美しいので、その分野の有名なバーコフの円と呼ばれる円ですが、2つの円に直交していますが、点に近づいていくとき、 円は接していたのですが、出てきた円は接するのではなくて、直交でしょうか。 実に面白いことは ゼロ除算が発見した典型的な結果として、y軸の勾配はゼロ、\tan(\pi/2) =0 ですから、バーコフの円は2つの円に接しているということを述べていますから、 堪らなく楽しいと言えます。― 直交は接していると解釈できるという新発見です。 緑の円は美しく3つの円に接しています。
論文では、あらゆる場合を考えたと述べていますので、3つの円が3つの点でも、3本の直線の場合も考えて、デカルトの定理は成り立っていると述べていますので、さらに面白いです。それには、ゼロの意味を考えてゼロとは何かを発見する必要が有ります。
以 上
2017.12.29.14:17 アーカイブ審査の上、公表された。超古典的な考えに間違いがあると書いてあるので、担当者は慎重に扱った。http://arxiv.org/abs/1712.09467
再生核研究所声明 404(2017.12.30):
ゼロ除算の現状 ― 総合的な印象
ゼロ除算の著書を出版すべく執筆をしている。700件を超えるメモ、記録を参照しながら一応の素案、原案を152ページに纏めた。ゼロ除算発見4周年を目前にしている。そこで、ふと思い湧く印象について述べて置きたい。
ゼロ除算発見 4周年 目前で、数理論の内容は初歩数学であるから、全体が何もかも当たり前に思え、700件を超える知見も当たり前で、著書は簡潔に纏め切れると感じてきた。そのような折り、学位論文で提起、最初の著書で真正面から取り上げ、論じ、未解決の問題と述べてきた超難問が解けたとの論文が 北京大学 のQi'an Guan氏から送られてきた。秀才の関係者も解けず、関与する数学者ももはや世界に存在せず、従ってもはや300年以上も もう解決できないだろうと考えてきた。最初の著書出版1988年からでもちょうど30年を迎えている。全く予想できない発想、深い手段、複雑な構造、このような全く新奇な数学に驚嘆すると共に 北京大学の基礎の深さ、底力の大きさに驚嘆させられ、高貴な独創性、創造性、発想に感銘を受けている。 このような衝撃は友人の山田陽氏の研究などにも見られたが稀なる経験である。
この衝撃的な深い研究、高貴な理論に感銘している折りに、自らの著書、論文の位置づけについて思いを巡らすこととなった。
まずは、ゼロ除算の論理が、ゼロ除算の拓いた世界が当たり前と思える内容であるが、内容がアリストテレス、ユークリッド以来の世界観を変えるものである。 数学ではゼロ除算は未定義、不定性、不可能性が世の定説であるが、天才たちのいろいろな関与、昨年でも2編の大論文が発表されている。 ゼロ除算の永い、神秘的な歴史を回想すると、内容の意味の大きさと、理論の簡素さの大きな隔たりに、驚嘆させられる。極めて簡単な発見が、世界観の変更を要求している:
無限遠点はゼロで表される。すべての直線は原点を通り、ユークリッドの公理は成り立たない。 y軸の勾配はゼロ、\tan(\pi/2) =0であること。解析関数は孤立特異点で固有な値を取り、それが 重要な意味を持つこと。ゼロ除算の影響は初歩数学全般におよび、現代数学には大きな欠落、欠陥があるから、全般的に補充し、完全化されるべきである。極めて簡単な数学が、発見されて大きな影響を広く与える事実である。この差の大きさを 現代数学の目も眩むような高度さ、深さ、徹底した論理の厳格さの視点から思うとき、誠に奇妙な事件に思われて仕方がない。 余りにも大きな新規な結果に、そんなものは受け入れられないとは 多く人の印象であり、論文を相当発表、学会や国際会議でも講演を行っているにも関わらず、4年近く経っても公認の形にはなっていないようである。世間では新しい、基本的な数学が知られていないと言える。―― 我々の空間の認識がアリストテレス、ユークリッド以来 間違っているにも関わらずである。
ゼロ除算 0/0=0は 算術の創始者、ゼロの発見者 Brahmagupta (598 -668 ?) によって定義されていたにも関わらず、それは間違いであるとして1300年を超えて続いており、さらに、新たな説、論文が出版されている実におかしな状況にある。しかるに我々は ゼロ除算は既に当たり前であるとして、沢山の証拠を掲げて解説、説得を続けているが、理解は着実に進んでいるにも関わらず、理解は深くはなく、遅々として夜明け前のぼんやりしているような時代であると言える。数学者は、真実に忠実でなければならないのに、数学の研究では、論理には、感情や私情、予断、思い込みを入れてはならないのに、それが、数学の精神であるはずなのに かえって、数学者が予断と偏見、私情に囚われている状況が皮肉にも良く見える。 それは、ゼロ除算の理解が、素人の方の方が理解しやすい状況に現れている。 ― 数学は 絶対的に 厳格な論理でできているはずであるから、基礎が揺るぐはずがないとの信仰、信念を有しているためであろう。しかしながら、人間精神の開放と自由を求めて、非ユークリッド幾何学の出現から、人は大いに学ぶべきではないだろうか。 絶えず、人は何でも疑い、 と 問うべきである。 ― 人間存在の意義は 真智への愛にある。
今回の著書原案では一通り全体を纏めてみたが、全体の様子は、まずゼロ除算の導入をきちんと行い、論理をしっかりさせ、確立させ、歴史的な背景を述べ、ゼロ除算算法の考え方とその有効性を示す具体例を沢山述べた。それで、今まで、考えなかった世界の自然な大きな世界が良く見える様になるだろう。この時、我々の数学が、空間の認識が、如何に不完全なものであったかを 明白に理解されるだろう。
ゼロ除算のこの著書は 第1歩であり、いわば初歩入門書である。 本格的なゼロ除算の研究はここから始まると考えたい。Qi'an Guan氏のような数学者や、物理学者が現れて、ゼロ除算の世界は、面目を一新させ、目も眩むほどに発展させるだろうことを 信じて疑わない。
以 上
再生核研究所声明 400(2017.11.17): 数学の研究における喜びと嫌な思い
人間生きて居れば楽しいとき、苦しいとき、感情の起伏は避けられない。人間の感情は絶えず揺れ動くものである。数学の研究におけるそのような感情の起伏を回想しながら纏めてみたい。
研究の初期であるが、何を研究するか、研究課題の選択は非常に難しく一般には研究生活における苦しい時期ではないだろうか。もちろん好きだから数学を専攻したのだから、学んでいるときには新しい世界がどんどん広がって、楽しいが、新しい結果を得るには一般には容易なことでないと言える。広く深い現代数学において研究課題の選択は研究者の将来を相当に定めることになる。一般には好きな分野での好きな指導教授の数学の範囲での選択に成る。そこで、何か新しいことを発見、解決して、論文を出版することが大事な目標になる。論文を出版する事は博士号の取得や研究職に付くための条件に成るから、何が何でも論文を書くが 直接の目標になる。この時、手っ取り早い方法は提起されている問題を解決したり、読んだ論文の内容の一般化、精密化、類似の理論の展開などであるが、それらとて甘くはなく、いずれもそれぞれの専門家が出来なかったこと、気づかないことの発見、新規な展開だから、研究は厳しく、研究の初期は誠に厳しいものであると考えられる。- 数学を志す者にはいわば優秀な人が多く、難なくここを踏破していく者も多い。しかし、簡単に踏破していくような人は行き詰る場合も多く、苦労して研究課題を自分に合ったように選択した者は、最初は遅れても永く研究が続く面もあるようである。- この観点からは、早期の成果を期待し過ぎの風潮は問題があるのではないだろうか。何事初期の取り組みが大事なようである。専門化、高度化の厳しい現代数学、簡単には研究課題は変えられず、生涯の研究の方向は 多くは初期で決まっている現実があると考えられる。― これは何でも飛び越えていくような天才的な人を想定しているのではなく、一般的な数学者を想定している。
1つの研究課題で論文が連続的に書けるような時代に入れば、充実した研究生活で、創造活動ができる輝ける時代を歩めるのではないだろうか。新しい考えが湧いたとき、思わぬことを発見したとき、またそのような予感がする時は 研究者の充実しているときであると言える。良い考えが湧いたときなど、眩暈がするほどの喜びが湧き、それは苦しいほどであると表現できる。発見の瞬間、得た結果の評価に対する共感、共鳴は人間の最高の喜びの類に入るだろう。評価が違って共感が得られなかったり、論文執筆上の形式的な気遣いは研究生活における影の部分に成るが、それが研究の芽に成るので、苦しみも喜びの内と考えるべきである。研究課題の行き詰まりもそうである。行き詰るから新しい芽が出てくるのである。苦しみと喜びは絶えず変化し、喜びも苦しみも区別がつかず、その活動が研究生活と言える。
若い研究者の博士号取得、就職、そしてパーマネントの研究職に付くまでの厳しさは回想しても苦しい、修業時代と言える。しかしそれらが、生涯の研究の基礎に成る。
所謂論文投稿から採否決定までの間、永さは 研究者にとっては一般に苦しい状態ではないだろうか。研究成果を評価に活かせないからである。その点、インターネットの普及で論文原稿をアーカイブなどで公開できるシステムには 格段の進歩と高く評価される。- 英文書き換え要求に対して 多くは1週間かけて 進んだIBM 修正機能付きの電子タイプライターで書き替え、原稿の送付と返事にさらに2週間掛ったが、現在は、修正は分単位、何回でも書き換えができて、連絡は1日で十分である。素晴しい時代を迎えていると言える。
研究者の嫌なこととは集中している折り、いろいろ雑用が入ることではないだろうか。一心不乱に研究に専念しているとき、それを乱されるとき、本能的に嫌がるのは自然な心で、心此処にあらずの状況は良き家庭人や良き親であることの余裕を失わせ、いろいろ良からぬ家庭問題や対人関係を作りかねないと憂慮される。大学の法人化後の日本の大学の多くが研究者の大事な自由な時間と余裕を失なわしめ、逆に雑用を多くして、研究者を虐待しているように感じられる。5年間ポルトガルの大学から研究員として招待され、研究に専念できたが、過ごした経験から、あまりにも大きな違いを感じて 唖然としている。
それから、数学の研究成果の発表では 間違いをおかしてはならないことは 相当に厳しい原則であるから、投稿したら、間違いがあった、出版済みの論文に間違いを発見した等の場合には、相当ショックで、相当に苦しい心理状況に追い込まれる。研究上の相当な時間は 繰り返し不備はないか、間違いはないかの省察の時間ではないだろうか。絶えず、大丈夫か、大丈夫か、間違いはないか、間違いはないかと自問していると言える。もちろん、理論の全体の在り様に対する想いは、真智への愛 である。
以 上
人間生きて居れば楽しいとき、苦しいとき、感情の起伏は避けられない。人間の感情は絶えず揺れ動くものである。数学の研究におけるそのような感情の起伏を回想しながら纏めてみたい。
研究の初期であるが、何を研究するか、研究課題の選択は非常に難しく一般には研究生活における苦しい時期ではないだろうか。もちろん好きだから数学を専攻したのだから、学んでいるときには新しい世界がどんどん広がって、楽しいが、新しい結果を得るには一般には容易なことでないと言える。広く深い現代数学において研究課題の選択は研究者の将来を相当に定めることになる。一般には好きな分野での好きな指導教授の数学の範囲での選択に成る。そこで、何か新しいことを発見、解決して、論文を出版することが大事な目標になる。論文を出版する事は博士号の取得や研究職に付くための条件に成るから、何が何でも論文を書くが 直接の目標になる。この時、手っ取り早い方法は提起されている問題を解決したり、読んだ論文の内容の一般化、精密化、類似の理論の展開などであるが、それらとて甘くはなく、いずれもそれぞれの専門家が出来なかったこと、気づかないことの発見、新規な展開だから、研究は厳しく、研究の初期は誠に厳しいものであると考えられる。- 数学を志す者にはいわば優秀な人が多く、難なくここを踏破していく者も多い。しかし、簡単に踏破していくような人は行き詰る場合も多く、苦労して研究課題を自分に合ったように選択した者は、最初は遅れても永く研究が続く面もあるようである。- この観点からは、早期の成果を期待し過ぎの風潮は問題があるのではないだろうか。何事初期の取り組みが大事なようである。専門化、高度化の厳しい現代数学、簡単には研究課題は変えられず、生涯の研究の方向は 多くは初期で決まっている現実があると考えられる。― これは何でも飛び越えていくような天才的な人を想定しているのではなく、一般的な数学者を想定している。
1つの研究課題で論文が連続的に書けるような時代に入れば、充実した研究生活で、創造活動ができる輝ける時代を歩めるのではないだろうか。新しい考えが湧いたとき、思わぬことを発見したとき、またそのような予感がする時は 研究者の充実しているときであると言える。良い考えが湧いたときなど、眩暈がするほどの喜びが湧き、それは苦しいほどであると表現できる。発見の瞬間、得た結果の評価に対する共感、共鳴は人間の最高の喜びの類に入るだろう。評価が違って共感が得られなかったり、論文執筆上の形式的な気遣いは研究生活における影の部分に成るが、それが研究の芽に成るので、苦しみも喜びの内と考えるべきである。研究課題の行き詰まりもそうである。行き詰るから新しい芽が出てくるのである。苦しみと喜びは絶えず変化し、喜びも苦しみも区別がつかず、その活動が研究生活と言える。
若い研究者の博士号取得、就職、そしてパーマネントの研究職に付くまでの厳しさは回想しても苦しい、修業時代と言える。しかしそれらが、生涯の研究の基礎に成る。
所謂論文投稿から採否決定までの間、永さは 研究者にとっては一般に苦しい状態ではないだろうか。研究成果を評価に活かせないからである。その点、インターネットの普及で論文原稿をアーカイブなどで公開できるシステムには 格段の進歩と高く評価される。- 英文書き換え要求に対して 多くは1週間かけて 進んだIBM 修正機能付きの電子タイプライターで書き替え、原稿の送付と返事にさらに2週間掛ったが、現在は、修正は分単位、何回でも書き換えができて、連絡は1日で十分である。素晴しい時代を迎えていると言える。
研究者の嫌なこととは集中している折り、いろいろ雑用が入ることではないだろうか。一心不乱に研究に専念しているとき、それを乱されるとき、本能的に嫌がるのは自然な心で、心此処にあらずの状況は良き家庭人や良き親であることの余裕を失わせ、いろいろ良からぬ家庭問題や対人関係を作りかねないと憂慮される。大学の法人化後の日本の大学の多くが研究者の大事な自由な時間と余裕を失なわしめ、逆に雑用を多くして、研究者を虐待しているように感じられる。5年間ポルトガルの大学から研究員として招待され、研究に専念できたが、過ごした経験から、あまりにも大きな違いを感じて 唖然としている。
それから、数学の研究成果の発表では 間違いをおかしてはならないことは 相当に厳しい原則であるから、投稿したら、間違いがあった、出版済みの論文に間違いを発見した等の場合には、相当ショックで、相当に苦しい心理状況に追い込まれる。研究上の相当な時間は 繰り返し不備はないか、間違いはないかの省察の時間ではないだろうか。絶えず、大丈夫か、大丈夫か、間違いはないか、間違いはないかと自問していると言える。もちろん、理論の全体の在り様に対する想いは、真智への愛 である。
以 上
0 件のコメント:
コメントを投稿