2018年1月31日水曜日

Budget 2018 for Education: Why Arun Jaitley may give a boost to science and technology education in India

Budget 2018 for Education: Why Arun Jaitley may give a boost to science and technology education in India

Budget 2018 for Education: Economic Survey 2017-18 was tabled by Finance Minister Arun Jaitley in the Parliament on Monday. The Survey had a separate chapter for Science and Technology.

 
Budget 2018 for Education: Economic Survey 2017-18 was tabled by Finance Minister Arun Jaitley in the Parliament on Monday. The Survey had a separate chapter for Science and Technology. While talking about Transforming Science and Technology in India, the Survey stated that in order to promote innovation, the Indian youth should be taught more about the same.
“To recapture the spirit of innovation that can propel it to a global science and technology leader – from net consumer to net producer of knowledge – India should invest in educating its youth in science and mathematics, reform the way R&D is conducted, engage the private sector and the Indian diaspora, and take a more mission-driven approach in areas such as dark matter, genomics, energy storage, agriculture, and mathematics and cyber-physical systems,” said the Survey.
India has emerged as one of the world’s largest economies and now it needs to gradually move from being a net consumer of knowledge to becoming a net producer, states the Economic Survey. From the invention of the most important mathematical innovation, Zero to different contributions made by Aryabhata, Brahmagupta, CV Raman, Srinivasa Ramanujan and others, India has made historical contributions to science over the years.
While the history of Indian science and Technology was full of innovation, it now needs to redouble its efforts to improve science and R&D in the country first and foremost by doubling national expenditure on R&D with most of the increase coming from private sector and universities.
Towards this, India needs to make considerable strides in improving access to primary and secondary education to improve its learning outcome that has been weak. No country can create a vibrant superstructure of R&D with weak foundations of primary and secondary education for so many of its young, states the Economic Survey. It is because of this weakness that denies India access to the intellect and energies of millions of young people. This is also the reason by FM Arun Jaitley in the upcoming Budget 2018 might announce funds to boost science and technology education in India so that the foundations of primary and secondary education in the country is strong and so are the outcomes.

とても興味深く読みました:

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement410 :  What is mathematics? --  beyond logic; for great challengers on the division by zero\\
(2018.1.30.)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
 }
\date{\today}
\maketitle
 The Institute of Reproducing Kernels is dealing with the theory of division by zero calculus and declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 - BC322) and Euclid (BC 3 Century - ), and the division by zero is since Brahmagupta  (598 - 668 ?).
In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we showed that his definition is suitable.
 For the details, see the references and the site: http://okmr.yamatoblog.net/

We wrote a global book manuscript \cite{s18} with 154 pages
 and stated that the division by zero is trivial and clear,  and in the last section of the manuscript we stated as follows:
\bigskip



\bigskip

{\bf Conclusion}
\medskip


 Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.

This book is an elementary mathematics  on our division by zero as the first publication of  books for the topics. The contents  have wide connections to various fields beyond mathematics. The author expects the readers write some philosophy, papers and essays on the division by zero from this simple source book.

The division by zero theory may be developed and expanded greatly as in the author's conjecture whose break theory was recently given surprisingly and deeply by  Professor Qi'an Guan \cite{guan} since 30 years proposed  in \cite{s88} (the original is in \cite {s79}).

We have to arrange globally our modern mathematics with our division by zero  in our undergraduate level.

We have to change our basic ideas for our space and world.

We have to change globally our textbooks and scientific books on the division by zero.

\bigskip

However, we have still curious situations and opinions for us on the division by zero; in particular, the two great challengers Jakub Czajko  and Ilija Barukčić on the division by zero in connection with physics stated that we do not have the definition of the division $0/0$, however $0/0=1$.
They seem to think that a truth is based on physical objects and is not on our mathematics. In such a cases, we will not be able to continue discussions on the division  by zero more, because for mathematicians, they will not be able to follow their logics more. However, then we will ask for the question that what are the values and contributions of your articles and discussions. We will expect some contributions, of course.

This question will reflect to mathematicians contrary. We stated for the estimation of mathematisc in \cite{s97}: Mathematics is the collection of relations and, good results are fundamental,
 beautiful, and give
great good impacts to human beings.

With this estimation,  we stated that the Euler formula
$$
e^{\pi i} = -1
$$
is the best result in mathematics in details in:
\medskip

No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf
\medskip

 In order to show the importance of our division by zero and division by zero calculus we are requested to show their importance.

It seems that the long and mysterious confusions for the division by zero is on the definition. --
 Indeed, when we consider the division by zero $a/0$ in the usual sense of the fundamental equation $0 \cdot z= a$, we have immediately the simple contradiction, however, we have such cases may happen, in particular, in mathematical formulas and physical formulas on the universe.


\bibliographystyle{plain}
\begin{thebibliography}{10}


\bibitem{bar}
I. Barukčić, 
Dialectical Logic – Negation Of Classical Logic,
 http://vixra.org/abs/1801.0256


\bibitem{jake}
J. Czajko, Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces,
 Available online at  www.worldscientificnews.com
WSN 92(2) (2018) 171-197                                                                           


\bibitem{guan}
Q.  Guan,  A proof of Saitoh's conjecture for conjugate Hardy H2 kernels, arXiv:1712.04207.


\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{ms16}
T. Matsuura and S. Saitoh,
Matrices and division by zero z/0=0,
Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
Published Online June 2016 in SciRes.   http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.

\bibitem{ms18}
T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication)

\bibitem{mms18}
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.

\bibitem{msy}
H. Michiwaki, S. Saitoh and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mos}
H. Michiwaki, H. Okumura and S. Saitoh,
 Division by Zero $z/0 = 0$ in Euclidean Spaces,
 International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue  1, 2017), 1-16.


\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), {\bf 1}(2017),  70-77.

\bibitem{os}
H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

\bibitem{o}
H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International  Journal of Geometry.

\bibitem{os18}
H. Okumura and S. Saitoh,
Applications of the division by zero calculus to Wasan geometry.
(Submitted for publication).

\bibitem{ps18}
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. {\bf 3}1, No. 8. (Oct., 1924), pp. 387-389.

\bibitem{s97}
T. M. Rassias, Editor, Nonlinear Mathematical   Analysis and Applications, HadronicPress,Palm Harbor,FL34682-1577,USA:ISBN1-57485-044-X,1998,   pp.223–234: Nonlinear transforms and analyticity of functions, Saburou Saitoh.


\bibitem{s79}
S. Saitoh, The Bergman norm and the Szeg$\ddot{o}$ norm, Trans. Amer. Math. Soc. {\bf 249} (1979), no. 2, 261--279.

\bibitem{s88}
 S. Saitoh, Theory of reproducing kernels and its applications. Pitman Research Notes in Mathematics Series, {\bf 189}. Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York, 1988. x+157 pp. ISBN: 0-582-03564-3



\bibitem{s14}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016),     151-182. (Springer) .

\bibitem{s17}
S. Saitoh, Mysterious Properties of the Point at Infinity、
arXiv:1712.09467 [math.GM](2017.12.17).

\bibitem{s18}
S. Saitoh, Division by zero calculus (154 pages: draft): (http://okmr.yamatoblog.net/)

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.



\end{thebibliography}

\end{document}




0 件のコメント:

コメントを投稿