2017年9月5日火曜日

Re: Highlights of Ancient Indian Mathematics Postby vinay » Mon Feb 11, 2013 9:47 pm Hari Om!

Postby vinay » Mon Feb 11, 2013 9:47 pm
Hari Om!

It has been quite a while that we saw some new posts. Sharing some information on India's two main contributions in the field of mathematics. Please give your thoughts/questions on the below matter.

I would urge everyone to make use of the discussion forum to share their views and put up their questions freely.

The two main discoveries that changed the course of mathematics are – the Numeral Zero and Decimal Place Value System.


ZERO AND DECIMAL PLACE VALUE SYSTEM

The concept of zero can be seen in many places in the Vedic literature. The great Sanskrit grammarian, Panini (500 BCE), mentions about zero several times in his text Ashtadhyayi. In Nyaya school of philosophy, the concept of shunya (zero) is mentioned and so is in Buddhism. Shunya is used as a symbol in Chandas Sutra of Pingala (300 BCE). Later the famous mathematician of the Classical period, Aryabhatta, writes in his text Aryabhatiya different operations by zero.

As we can see, the development of zero can be seen from being a concept of zero to the symbol or numeral zero. As of now, we cannot say which Indian mathematician can be accredited with the discovery or numeral zero or if ever there was one sole discoverer of zero. All that can be said is that it might have been during the early classical period (500 BCE - 500 CE) that the concept of zero found a numeral's form in India.

The concept of decimal place value system can also be seen in the Vedic literature like Rigveda and Taittireeya Samhitawhere they have given different names for the powers of 10. In Valmiki Ramayan, Valmika goes on giving the names for powers of 10 upto 10 to the power 62, (1 followed by 62 zeros) for which he gives the name Mahaukham. This he does to tell the number of monkeys in Rama's army that went in search of Sita. So, the concept of decimal place value system can be seen in such contexts in Indian literature.

It is noteworthy to see that since the Indian educational system was of oral-tradition centuries ago, they could do high level calculations even without having word numerals in the form of 1, 2, 3, 4, etc. Somewhere they knew that Base-10 system was the most suitable for counting for various reasons and hence the mention of decimal place value system in the Vedic literature.

The Babylonians were using a place value system of base 60, but it lacked zero. Only when zero came to be used as a numeral along with the decimal place value system, did calculations become very easy.

Historians, scientists and mathematicians all over the world have credited these two discoveries of zero and decimal place value system to Indian mathematicians. In the words of the famous French mathematician-astronomer Pierre-Simon Laplace, "It is India that have gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very simplicity and the great ease which it has lent to all computations put our arithmatic in the first rank of useful inventions; and we shall appreciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity."http://forum.chinfo.org/viewtopic.php?f=21&t=41848  

とても興味深く読みました:
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 380:   What is the zero?\\
(2017.8.21)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
 }
\date{\today}
\maketitle

\section{What is the zero?}

The zero $0$ as the complex number or real number is given clearly by the axions by the complex number field and real number field.

For this fundamental idea, we should consider the {\bf Yamada field}  containing the division by zero. The Yamada field and the division by zero calculus will arrange our mathematics, beautifully and completely; this will be our natural and complete mathematics.
\medskip

\section{ Double natures of the zero $z=0$}

The zero point $z=0$ represents the double natures; one is the origin at the starting point and another one is a representation of the point at infinity. One typical and simple example is given by $e^0 = 1,0$, two values. {\bf God loves  two}.

\section{Standard value}
\medskip

The zero is a center and stand point (or bases, a standard value) of the coordinates - here we will consider our situation on the complex or real 2 dimensional spaces. By stereographic
 projection mapping or the Yamada field, the point at infinity $1/0$ is represented by zero. The origin of the coordinates and the point at infinity correspond each other.

As the standard value, for the point $\omega_n = \exp \left(\frac{\pi}{n}i\right)$  on the unit circle $|z|=1$ on the complex $z$-plane is,  for $n = 0$:
\begin{equation}
\omega_0 = \exp \left(\frac{\pi}{0}i\right)=1, \quad  \frac{\pi}{0} =0.
\end{equation}
For the mean value
$$
M_n  = \frac{x_1  +  x_2  +... + x_n}{n},
$$
we have
$$
M_0 = 0 = \frac{0}{0}.
$$
\medskip

\section{ Fruitful world}
\medskip

For example, for very and very general partial differential equations, if the coefficients or terms are zero, then we have some simple differential equations and the extreme case is all the terms are zero; that is, we have trivial equations $0=0$; then its solution is zero. When we consider the converse, we see that the zero world is a  fruitful one and it means some vanishing world. Recall Yamane phenomena (\cite{kmsy}), the vanishing result is very simple zero, however, it is the result from some fruitful world. Sometimes, zero means void or nothing world, however, it will show {\bf some changes} as in the Yamane phenomena.

\section{From $0$ to $0$; $0$ means all and all are $0$}
\medskip

As we see from our life figure (\cite{osm}), a story starts from the zero and ends with the zero. This will mean that $0$ means all and all are $0$. The zero is a {\bf mother} or an {\bf origin} of all.
\medskip

\section{ Impossibility}
\medskip
As the solution of the simplest equation
\begin{equation}
ax =b
\end{equation}
we have $x=0$ for $a=0, b\ne 0$ as the standard value, or the Moore-Penrose generalized inverse. This will mean in a sense, the solution does not exist; to solve the equation (6.1) is impossible.
We saw for different parallel lines or different parallel planes, their common points are the origin. Certainly they have the common points of the point at infinity and the point at infinity is represented by zero. However, we can understand also that they have no solutions, no common points, because the point at infinity is an ideal point.

Of course. we can consider the equation (6.1)  even the case $a=b=0$ and then we have the solution $x=0$ as we stated.

We will consider the simple differential equation
\begin{equation}
m\frac{d^2x}{dt^2} =0,  m\frac{d^2y}{dt^2} =-mg
\end{equation}
with the initial conditions, at $t =0$
\begin{equation}
 \frac{dx}{dt} = v_0 \cos \alpha , \frac{d^2x}{dt^2} = \frac{d^2y}{dt^2}=0.
\end{equation}
Then,  the highest high $h$, arriving time $t$, the distance $d$ from the starting point at the origin to the point $y(2t) =0$ are given by
\begin{equation}
h = \frac{v_0 \sin^2 \alpha}{2g},  d= \frac{v_0\sin \alpha}{g}
\end{equation}
and
\begin{equation}
t= \frac{v_0 \sin \alpha}{g}.
\end{equation}
For the case $g=0$, we have $h=d =t=0$. We considered the case that they are the infinity; however, our mathematics means zero, which shows impossibility.

These phenomena were looked many cases on the universe; it seems that {\bf God does not like the infinity}.

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
H. Michiwaki, S. Saitoh,  and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$, Advances in Linear Algebra
\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt 

\bibitem{mos}
H.  Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
 International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 

\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? -  the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

\bibitem{ann326}
 Announcement 326 (2016.10.17): The division by zero z/0=0 - its impact to human beings through education and research.

 \bibitem{ann352}
Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

\bibitem{ann354}
Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? -- relations of $0$ and infinity.

\bibitem{362}
Announcement 362(2017.5.5):   Discovery of the division by zero as
$0/0=1/0=z/0=0$.


\end{thebibliography}

\end{document}

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi
http://okmr.yamatoblog.net/

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
https://sites.google.com/site/sandrapinelas/icddea-2017

2017.8.21.06:37

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

                                                1/0=0、0/0=0、z/0=0


1/0=0、0/0=0、z/0=0


0 件のコメント:

コメントを投稿