一张通往数学世界的地图 精选
已有 1541 次阅读 2017-3-3 09:11 |系统分类:科普集锦
继物理学地图之后,今天要给大家带来的是一张通往数学世界的地图,概括了所有的数学分支。
故事还得从头开始。一切都始于计数。
事实上,计数不仅仅只是人类的特性,其它的动物(比如鸟、猴子等)也有计数的能力。人类在木头、骨头或石头上的计数符号从史前时代就开始被使用了。在石器时代的文化中,他们会使用计数符号进行赌博、私人服务和交易。
△ 一切起源于计数。
最近的几千年里,在不同的国度,数学都得到了发展。古埃及人写下了第一个方程。古希腊人则在许多方面都有贡献,比如几何和数秘术。中国数学家早就有了负数的概念。“0”这个数字则在印度首次被使用。接着在波斯伊斯兰教的黄金时期,数学家又跨越了一大步,书写了第一部代数学的书籍。在文艺复兴时期,数学与科学则共同欣荣发展。
当然,以上提到的仅仅是数学历史中的冰山一角,我不打算在这里提及更多。我的主要目标是要带你们进入现代数学的分支。
现代数学可以大致被分为两个领域:纯粹数学(研究数学本身)和应用数学(用以解决更实际的问题)。但我们要记住的是,它们之间其实有着紧密的关联。如果能的话,这张地图更应该是一张网络,连接着每个相关的分支。但我们现在只能尽量把它呈现在二维的平面上。
△ 左边为纯粹数学,右边为应用数学。
事实上,从历史中我们会发现,有许多数学家一开始只是出于好奇以及对美的追求去研究数学,然后发展了一系列美丽而又有趣的数学分支,但对于真实世界却一点用处都没有。令人惊喜的是,比如在100年后,当有些科学家正在试图解决物理学或计算机科学最前沿的问题时发现,他们所需要的数学其实早就在纯粹数学里被发展出来了。这样的例子不胜枚举,比如广义相对论的发展依赖于黎曼度规;弦理论则需要卡-丘空间等等。这些抽象的概念最终被应用在其它的科学领域中是非常令人欣喜的一件事。
先抛开纯粹数学是否有一天能被应用在现实中去,其实研究纯粹数学本身也是非常有价值的事。如果你问一位数学家为什么要研究纯粹数学,我想很多人的答案会简洁到只有一个字,那就是:美!
现在我们首先进入纯粹数学的领域。
纯粹数学
纯粹数学主要包括四个部分:
△ 纯粹数学包括数字系统、结构、空间和变化。
【数字系统】
数字系统的研究起源于数,一开始为熟悉的自然数(1、2、3...)及整数(…-2、-1、0、1、2...)与被描述在算术内的自然数及整数的算术运算(+-× ÷ )。当数系进一步发展时,整数被视为有理数(-7、1/2、2.32...)的子集,而有理数则包含于实数(-4π、e、√2...)中。实数则可以进一步被广义化为复数(4+3i、-4i...)。除此外,还有其它一系列的数(比如四元数、八元数和基数等)。还有一些数深受数学家的喜爱,比如π、e和质数(1,3,11...)。
刚才提到的这些数字都有一些有意思的性质,例如,尽管实数和整数都有无限多,但实数要比整数多。所以有一些无限实际要比另一些大。
【结构】
对结构的研究起始于将数字以变量的形式代入方程(y=mx+c)。如何解这些方程的规则包含在代数之中。在这个分支中,还有矢量和矩阵,它们都是多维数,而它们之间的联系于线性代数中被研究。
在这个分支内,有一个被誉为“最纯”的数学领域,那就是数论。数论专注于研究在“数字系统”中提到的所有数的特征,比如质数的性质(质数产生了很多非专业人士也能理解而又悬而未解的问题,如哥德巴赫猜想,孪生质数猜想等)。
另一方面,组合数学是一门研究可数或离散对象的数学分支,比如树、图论等,一些著名的问题包括地图着色问题、船夫过河问题等等。群论则是研究名为群的代数结构,一个熟悉的例子就是魔方,是一个置换群。序理论是研究捕获数学排序的直觉概念的各种二元关系的数学分支,比如哈斯图,是用来表示有限偏序集的一种数学图标。
【空间】
纯粹数学的另一个部分是研究形状和它们在空间中的行为。空间的研究源自于几何——尤其是欧几里得几何。三角学则结合了空间及数,且包含有著名的勾股定理。还有一些比较有趣的领域,比如分形,它是一种具有尺度不变性的数学模式,意思是说你无论你怎么放大它们看起来都是一样的。
在其许多分支中,拓扑学可能是20世纪数学中有着最大进展的领域。拓扑学研究的是空间的不同性质,你可以连续不断地将它们变形,但不能将它们撕裂或粘合。例如,无论你对莫比乌斯带做什么,它永远只有一个面和一个边界。在拓扑学里,咖啡杯和甜甜圈是一样的东西。拓扑学包含了存在已久的庞加莱猜想(2006年由数学家格里戈里·佩雷尔曼证明)以及颇有争议的四色定理(1976年由计算机证明)。
测度论是一种给空间或集分配数值的数学分支,它将数和空间联系起来。最后,微分几何是非常重要的一个数学分支,它研究在弯曲表面上的形状的性质,比如三角形在弯曲的表面中内角和跟在欧式空间中的不一样。
【变化】
了解及描述变化在自然科学里是一个普遍的议题,而微积分更加使研究变化的有力工具。函数诞生于此,作为描述一变化的量的核心概念。微积分是研究极限、微分学(函数的梯度的行为)、积分学(函数下的面积)和无穷级数的一个分支。而向量分析关注的则是向量场的微分和积分。
除此外,还有一系列其它的研究方向。动力系统描述的是系统如何随着时间流逝从一个状态演化到另一个状态,比如流体流动或任何有反馈环路的东西(如生态系统)。混沌理论则是对系统的既不可预测而又是决定的行为作明确的描述,它对于初始条件非常敏感,比如著名的蝴蝶效应。最后是复分析,对于实数及实变函数的严格研究为实分析,而复分析则为复数的等价领域。数学中最大的未解问题之一——黎曼猜想便是以复分析来描述的。
以上这些便是纯粹数学的各个分支。接下来我们进入应用数学的领域。应用数学的主旨在于将抽象的数学工具运用在解答科学、工程、商业及其他领域上的现实问题。
应用数学
△ 数学被广泛地应用在各个科学领域。
我们从物理学开始。基本上在纯粹数学提到的所有分支都多多少少的被应用于物理学上。数学和理论物理跟纯粹数学的关系是密不可分的。许多数学理论是在物理问题的基础上发展起来的;也有很多数学方法和工具通常只在物理学中找到实际应用。例如,微分方程被应用在经典力学和量子力学;场论被应用在电磁场、引力场和规范场;群论和表示论别应用在粒子物理学中。
除了物理外,数学也被应用在其它的自然科学上,特别是在数学化学和生物数学上。在数学化学中,数学模型通常被用以模拟分子;拓扑化学也是一个热门的研究领域(2016年的诺贝尔化学奖就跟拓扑有关)。数学也大量应用在生物学中,如由于基因学的发展,生物学家采集到的大量数据必须通过解析方法加以处理;演化生物学和生态学都大量使用数学理论等等。
数学也被大量应用在工程学上,自古埃及和巴比伦时期,数学就被大量应用在建筑上。非常复杂的电路系统,比如在飞机或电网中,就利用了动力系统的方法,叫控制理论。
(这里推荐一本Mary Boas写的教材《Mathematical Methods in the Physical Sciences》,对于那些本科选择物理、化学和工程专业的学生,这本书可以快速的帮你们掌握所需要的数学知识。)
当一些数学太过于复杂我们无法有效地解决时,我们就会用到数值分析,它也包含了对计算中舍入误差或其它来源的误差之研究。例如,如果你把一个圆圈放进一个正方形中,并向它扔许多的飞镖,接着比较飞镖在圆圈和正方形的数量,你就可以得到 π 的近似值。但在现实中,数值分析通常会使用大型计算机来实现。
博弈论专注于思考游戏中的个体的预测行为和实际行为,并研究它们的优化策略。主要研究公式化了的激励结构(游戏)间的相互作用。其中一个代表性的应用例子是囚徒困境。博弈论在经济学、心理学、生物学、国际关系、政治学等其它学科都有广泛的应用。
概率论是集中研究概率及随机现象的数学分支,最简单的随机事件为扔硬币、抽扑克或掷骰子。应用数学中的一个重要领域为统计学,它利用概率论为其工具并允许对含有机会成分的现象进行描述、分析与预测。大部分的实验、调查及观察研究都依赖于统计分析。因此被广泛地应用在各门学科,从自然科学、社会科学到人文学科。特别是在金融行业,通过统计分析以获取最大的利益。
跟最大化利益相关的是最优化,你试图计算的是在一系列不同选择或限制下的最佳选择,也就是找到一个函数的最高或最低点。最优化问题是人类的第二天性,我们一直在都在进行最优化选择,比如试图最优化我们的快乐程度,购买的时候想要物有所值等等。
另一个领域跟纯数学有非常深的联系,那就是计算机科学。计算机科学的规则事实上是从纯数学中推导出来的。机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习是一门多领域的交叉学科,利用了数学的许多领域,比如线性代数、最优化、动力系统和概率论等等。
最后,密码术也是非常重要且实用的一个数学分支,应用到了纯粹数学研究,比如组合数学和数论等。
现在我们已经概括了纯粹数学和应用数学的主要部分。但是,还没有结束,我们不能够忽略数学的基础。
基础
数学的基础试图理解数学本身的性质,并且追问所有数学规则的基础是什么。是否存在着一套称为公理的完整的基本规则?我们要如何证明它是否自洽?数理逻辑、集合论和范畴论就试图回答这个问题。在数理逻辑中有一个非常著名的成果叫做哥德尔不完备定理,对大多数人来说,数学并没有一套完整和自洽的公理,意味着它们都是由我们人类创造的。这听起来很奇怪,因为数学如此完美的解释了宇宙中的许多事物。为什么我们会认为由人类创造的东西可以做到如此地步?这是一个非常深奥的谜题。
我们还有计算理论,它专注于研究不同的计算模型,基于这些模型如何能够有效地解决问题。它包含了复杂性理论,其中P/NP问题是该领域中至今没有解决的问题。
现在,我们有了一张通往数学世界的完整地图:
△ 数学地图。(图片来源:Dominic Walliman)
数学是一个非常抽象和美妙的世界,如果要用一句话形容它的重要性,那么我会选择伽利略曾经说过的:“如果一个人不懂得宇宙的语言,即数学的语言,他就不能够阅读宇宙这本伟大的书。”
你们认为学习或研究数学最大的乐趣是什么?
本文作者Dominic Walliman,转载自“原理”微信公众号,已获该号授权,版权由该号所有。
(本期责编:王芳)
一起阅读科学!
科学出版社│微信ID:sciencepress-cspm
专业品质 学术价值
原创好读 科学品味
とても興味深く読みました:ゼロ除算はどうでしょうか:
再生核研究所声明353(2017.2.2) ゼロ除算 記念日
2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは
再生核研究所声明 148(2014.2.12): 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
で、最新のは
Announcement 352 (2017.2.2): On the third birthday of the division by zero z/0=0
である。
アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。
1) ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2) 予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3) ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4) この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5) いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6) ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上
追記:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
再生核研究所声明347(2017.1.17) 真実を語って処刑された者
まず歴史的な事実を挙げたい。Pythagoras、紀元前582年 - 紀元前496年)は、ピタゴラスの定理などで知られる、古代ギリシアの数学者、哲学者。彼の数学や輪廻転生についての思想はプラトンにも大きな影響を与えた。「サモスの賢人」、「クロトンの哲学者」とも呼ばれた(ウィキペディア)。辺の長さ1の正方形の対角線の長さが ル-ト2であることがピタゴラスの定理から導かれることを知っていたが、それが整数の比で表せないこと(無理数であること)を発見した弟子Hippasusを 無理数の世界観が受け入れられないとして、その事実を隠したばかりか、その事実を封じるために弟子を殺してしまったという。
また、ジョルダーノ・ブルーノ(Giordano Bruno, 1548年 - 1600年2月17日)は、イタリア出身の哲学者、ドミニコ会の修道士。それまで有限と考えられていた宇宙が無限であると主張し、コペルニクスの地動説を擁護した。異端であるとの判決を受けても決して自説を撤回しなかったため、火刑に処せられた。思想の自由に殉じた殉教者とみなされることもある。彼の死を前例に考え、轍を踏まないようにガリレオ・ガリレイは自説を撤回したとも言われる(ウィキペディア)。
さらに、新しい幾何学の発見で冷遇された歴史的な事件が想起される:
非ユークリッド幾何学の成立
ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。
ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した(ウィキペディア)。
知っていて、科学的な真実は人間が否定できない事実として、刑を逃れるために妥協したガリレオ、世情を騒がせたくない、自分の心をそれ故に乱したくない として、非ユークリッド幾何学について 相当な研究を進めていたのに 生前中に公表をしなかった数学界の巨人 ガウスの処世を心に留めたい。
ピタゴラス派の対応、宗教裁判における処刑、それらは、真実よりも権威や囚われた考えに固執していたとして、誠に残念な在り様であると言える。非ユークリッド幾何学の出現に対する風潮についても2000年間の定説を覆す事件だったので、容易には理解されず、真摯に新しい考えの検討すらしなかったように見える。
真実を、真理を求めるべき、数学者、研究者、宗教家のこのような態度は相当根本的におかしいと言わざるを得ない。実際、人生の意義は帰するところ、真智への愛にあるのではないだろうか。本当のこと、世の中のことを知りたいという愛である。顕著な在り様が研究者や求道者、芸術家達ではないだろうか。そのような人たちの過ちを省みて自戒したい: 具体的には、
1) 新しい事実、現象、考え、それらは尊重されるべきこと。多様性の尊重。
2) 従来の考えや伝統に拘らない、いろいろな考え、見方があると柔軟に考える。
3) もちろん、自分たちの説に拘ったりして、新しい考え方を排除する態度は恥ずべきことである。どんどん新しい世界を拓いていくのが人生の基本的な在り様であると心得る。
4) もちろん、自分たちの流派や組織の利益を考えて新規な考えや理論を冷遇するのは真智を愛する人間の恥である。
5) 巨人、ニュートンとライプニッツの微積分の発見の先取争いに見られるような過度の競争意識や自己主張は、浅はかな人物に当たるとみなされる。真智への愛に帰するべきである。
数学や科学などは 明確に直接個々の人間にはよらず、事実として、人間を離れて存在している。従って無理数も非ユークリッド幾何学も、地球が動いている事も、人間に無関係で そうである事実は変わらない。その意味で、多数決や権威で結果を決めようとしてはならず、どれが真実であるかの観点が決定的に大事である。誰かではなく、真実はどうか、事実はどうかと真摯に、真理を追求していきたい。
人間が、人間として生きる究極のことは、真智への愛、真実を知りたい、世の中を知りたい、神の意思を知りたいということであると考える。 このような観点で、上記世界史の事件は、人類の恥として、このようなことを繰り返さないように自戒していきたい(再生核研究所声明 41(2010/06/10): 世界史、大義、評価、神、最後の審判)。
以 上
再生核研究所声明343(2017.1.10)オイラーとアインシュタイン
世界史に大きな影響を与えた人物と業績について
再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教
で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。
オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(
)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。
次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質はエネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。
ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:
Blackholes are where God divided by zero. I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (
Gamow, G., My World Line (Viking, New York). p 44, 1970).
今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。
しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
以 上
0 件のコメント:
コメントを投稿