2017年3月16日木曜日

50年来の禅者にして九州一の進学校物理教師がお経を解説!『劇的に運が良くなるお経 般若心経・延命十句観音経篇』3月17日(金)発売!!

50年来の禅者にして九州一の進学校物理教師がお経を解説!『劇的に運が良くなるお経 般若心経・延命十句観音経篇』3月17日(金)発売!!

[株式会社KADOKAWA]
アスキー・メディアワークス

株式会社KADOKAWA(本社:東京都千代田区、代表取締役社長:松原眞樹)アスキー・メディアワークスでは、“約50年来の禅者にして、九州一の進学校の物理教師でもある著者”が、世界一わかりやすく、お経の真義と、その効果的なとなえ方を記した書籍『劇的に運が良くなるお経 般若心経・延命十句観音経篇』を、3月17日(金)より、全国書店およびインターネット書店にて発売いたします。「実際に効果がある」ために千年以上もとなえ続けられてきたお経が「真に伝えていること」について、物理教師ならではの図解を交えつつ、どこよりもわかりやすく、かつ、いきいきとお伝えしています。


◆真意がわかると、お経は効く! あなたの願いが現実化する!!
 多くのふりがな&仏教用語のわかりやすい説明もあり、仏教の入門書としても最適!




 九州一の進学校の物理教師にして、仏道を約50年修行してきた禅者が、多くの図とともに世界一わかりやすく解き明かす、お経の真義。毎日が心安らぐ、奇跡を起こす強力なお経のとなえ方をご紹介します。
「夢や願望を成就させたい」
「切羽詰まった目の前の困難・障害を切り抜けたい」
「生きづらさ・生きる苦しみを解消したい」
「わくわくするような幸福感の中で生きたい」
「健康・長寿になりたい」
「とにかく運を良くしたい」
「仕事や学業、人間関係、恋愛などで成功したい」
「仏教が本当は何を言いたいのか知りたい」
「魂を進化させたい」
 そうした願いや想いを叶えるための最短ルートとなるお経のとなえ方をやさしく紹介。本書で“お経が真に伝えていること”を悟ったら、お経の「願望成就」の力をより早く、強く、あなたの「心」やあなたを取り巻く「現実世界」に波及させられるようになります。「そんなの、非科学的じゃないか?」という疑念が強い方は、“心を整える”ためのひとつの「瞑想」だと思って日々の生活に少しずつ取り入れてみてください(1日5分でも良いのです)。次第に、ご自身の心や環境、運勢の劇的な変化に気づきます。それこそが、お経が、千年以上も称え続けられてきた理由なのです。般若心経については、弘法大師・空海の解釈を踏まえて解説しています。


『劇的に運が良くなるお経 般若心経・延命十句観音経篇』概要
【書名】劇的に運が良くなるお経 般若心経・延命十句観音経篇
【著者】立花大敬
【定価】本体1,300円+税 【発売日】2017年3月17日(金)
【判型・ページ数】四六判・144ページ 【ISBN】978-4-04-892856-4
【発行】株式会社KADOKAWA アスキー・メディアワークス



《本書の内容》
●五〇年の禅修行の末に悟ったお経の力と称(とな)え方
 強力なお経を瞑想として日々の生活に取り入れよう/長年の禅修行の果てに知った「お経」の絶大な力/
 昔の日本人の多くが実感していた「お経」の力/「お経」は本来、一般民衆のためのもの/
 角倉老師のシンプル禅のススメ/私のお経読みは、ノンセクト・ラジカル
●第一章 『般若心経』の本当の意味とその力
 『般若心経』は何に効くのか?/従来の『般若心経』解釈への疑問/
 空海さんの解釈にヒントを得ることができた/『般若心経』全文/〈経題の章〉/〈概説の章〉/
 「観自在」の悟りとは?/〈菩薩の章〉(普賢菩薩のレクチャー/文殊菩薩のレクチャー/
 弥勒菩薩のレクチャー/声聞・縁覚に関するレクチャー/観音菩薩のレクチャー)/〈成果の章〉/
 〈呪の章〉/〈真言の章〉
●第二章 切羽詰まった時にすぐ効く『延命十句観音経』
 『延命十句観音経』が普及したわけ/『霊験記』より/観音菩薩とは?/
 『観音普門品偈』と『延命十句観音経』/『延命十句観音経』はこんな時に効く/
 『延命十句観音経』の称え方/私の霊験体験/『延命十句観音経』の現代訳と解説/『観音普門品偈』の解説

■本書内で紹介するお経(効果的な称え方をするためのふりがな付き)
【般若心経とは?】
  希望する現実を目の前に作り出すお経です。次第に魂も高次なものに進化していきます。
【延命十句観音経とは?】
  圧倒的な困難が目の前に立ちはだかった時に、切羽詰まった人を救い、いのちの可能性を延ばしてくれるごく短いお経です。

■著者プロフィール
立花 大敬(たちばな・だいけい)
 1948年、大阪府生まれ。大阪大学で生物工学を専攻。19歳から禅の世界に入門し、曹洞宗の内山興正師や臨済宗の角倉蘿窓師などに指導を受ける。1993年からは東京大学・理科3類などの超難関に多くの生徒を進学させている「久留米大学附設高等学校」の物理の教師。その後、同校の教頭職も務めた。1996年から刊行する『しあわせ通信』シリーズ(本心庵)が、斎藤一人氏や船井幸雄氏等の識者に高い評価を得ている。20年にわたり『元気アップ禅の会』で実践指導に携わる。2016年3月の定年退職を機に、全国をめぐり、講演や禅の指導の活動をスタートさせている。http://www.jiji.com/jc/article?k=000003142.000007006&g=prt
 
 
再生核研究所声明297(2016.05.19) 豊かなゼロ、空の世界、隠れた未知の世界

ゼロ除算の研究を進めているが、微分方程式のある項を落とした場合の解と落とす前の解を結び付ける具体的な方法として、ゼロ除算の解析の具体的な応用がある事が分かった。この事実は、広く世の現象として、面白い視点に気づかせたので、普遍的な現象として、生きた形で表現したい。
ある項を落とした微分方程式とは、逆に言えば、与えられた微分方程式はさらに 複雑な微分方程式において、沢山の項を落として考えられた簡略の微分方程式であると考えられる。どのくらいの項を落としたかと考えれば、限りない項が存在して、殆どがゼロとして消された微分方程式であると見なせる。この意味で、ゼロの世界は限りなく広がっていると考えられる。
消された見えない世界は ゼロの世界、空、ある隠された世界として、無限に存在していると考えられる。たまたま、現れた項が 表現する物理現象を記述していると言える。
これは、地球に繁茂する動植物が、大海や大地から、生まれては、それらに回帰する現象と同様と言える。大量に発生した卵の極一部がそれぞれの生物に成長して、やがて元の世界に戻り、豊かな大海や大地は生命の存在の元、隠れた存在の大いなる世界であると考えられる。無数の生命の発生と回帰した世界の様は 生物、生体の様の変化は捉えられても、人間の精神活用や生命の生命活動の様の精しい様などは 殆ど何も分からない存在であると言える。我々の認知した世界と発生して来た世界と消えて行った認知できない世界である。
このような視点で、人間にとって最も大事なことは 何だろうか。それは、個々の人間も、人類も 大きな存在の中の小さな存在であることを先ず自覚して、背後に存在する大いなる基礎、環境に畏敬の念を抱き、謙虚さを保つことではないだろうか。この視点では日本古来の神道の精神こそ、宗教の原点として大事では ないだろうか。未知なる自然に対する畏敬の念である。実際、日本でも、世界各地でも人工物を建設するとき、神事を行い、神の許しを求めてきたものである。その心は大いなる存在と人間の調和を志向する意味で人間存在の原理ではないだろうか。それはそもそも 原罪の概念そのものであると言える。
しかしながら、人類が好きなように生きたいも道理であり、巨大都市を建設して、環境を汚染して生存を享受したいも道理であるから、それらの一面も否定できず、それは結局全体的な有り様の中でのバランスの問題ではないだろうか。人類の進化の面には必然的に人類絶滅の要素が内在していると考えられる:

再生核研究所声明 144(2013.12.12) 人類滅亡の概念 - 進化とは 滅亡への過程である

 そこで、結局は全体的な調和、バランスの問題である:

再生核研究所声明 56: アースデイ の理念

発想における最も大事なことに触れたが、表現したかった元を回想したい。― それは存在と非存在の間の微妙な有り様と非存在の認知できない限りない世界に想いを致す心情そのものであった。無数とも言える人間の想いはどこに消えて行ったのだろうか。先も分からず、由来も分からない。世の中は雲のような存在であると言える。
以 上

再生核研究所声明306(2016.06.21) 平行線公理、非ユークリッド幾何学、そしてゼロ除算

表題について、山間部を散歩している折り新鮮な感覚で、想いが湧いて来た。新しい幾何学の発見で、ボーヤイ・ヤーノシュが父に言われた 平行線の公理を証明できたら、地球の大きさ程のダイヤモンドほどの値打ちがあると言われて、敢然と証明に取り掛かった姿とその帰結である。また、ユークリッドが海岸を散歩しながら幾何学を建設していく情景が鮮やかに想い出された(Liwanovaの『新しい幾何学の発見』(のちに『ロバチェフスキーの世界』と改題)(東京図書刊行)。この件、既に声明に述べているので、まずは確認したい:

再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)

まず基本語をウイキペデアで確認して置こう:
https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9

アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。

https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%

非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。
ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。

ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。

この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。

ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。

何と ユークリッド空間で 平行線は ある意味で全て原点で交わっている という、現象が明らかにされた。

もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。

そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。

ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。

この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。

平行線の交わりを考えてみる。交わる異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。

一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。

ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。

                                     以上


上記で、数学的に大事な観点は、ユークリッド自身そうであったが、平行線公理は真理で、証明されるべきもの、幾何学は絶対的な真理であると非ユークリッド幾何学の出現まで、考えられてきたということである。2000年を超える世界観であった事実である。そこで、平行線の公理を証明しようと多くの人が挑戦してきたが、非ユークリッド幾何学の出現まで不可能であった。実は、証明できない命題であったという全く意外な帰結であった。真に新しい、概念、世界観であった。証明できない命題の存在である。それこそ、世界観を変える、驚嘆すべき世界史上の事件であったと言える。

この事件に関してゼロ除算の発見は、全く異なる世界観を明らかにしている。ユークリッドそして、非ユークリッド幾何学の3人の発見者にとって、全く想像ができなかった、新しい事実である。平行線が 無限の先で交わっているとは ユークリッドは考えなかったと思われるが、近代では、無限の先で交わっていると考えられて来ている。― これには、アーベル、オイラー、リーマンなどの考えが存在する。このような考えは、ここ100年以上、世界の常識、定説になっている。ところがゼロ除算では、無限遠点は 数ではゼロが対応していて、平行線は代数的に原点で交わっている、すべての直線は代数的に原点を通っているという解釈が成り立つことを示している。ユークリッドの幾何学の建設時の想い、ボーヤイ・ヤーノシュの激しい挑戦の様を、 想い を 深く、いろいろ想像している。

以 上

Matrices and Division by Zero z/0 = 0


再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか

ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:

Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
数 0 は正でも負でもなく、素数でも合成数でも単数でもない。しかし、0は偶数である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0x= 0 である。しかしx0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。

実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:

しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:

19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。

複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。

全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。

古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。

2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上

再生核研究所声明255 (2015.11.3) 神は、平均値として関数値を認識する

(2015.10.30.07:40 
朝食後 散歩中突然考えが閃いて、懸案の問題が解決した:
どうして、ゼロ除算では、ローラン展開の正則部の値が 極の値になるのか?
そして、一般に関数値とは何か 想いを巡らしていた。
解決は、驚く程 自分の愚かさを示していると呆れる。 解は 神は、平均値として関数値を認識すると纏められる。実際、解析関数の場合、上記孤立特異点での関数値は、正則の時と全く同じく コ-シーの積分表示で表されている。 解析関数ではコ-シーの積分表示で定義すれば、それは平均値になっており、この意味で考えれば、解析関数は孤立特異点でも 関数値は 拡張されることになる ― 原稿には書いてあるが、認識していなかった。
 連続関数などでも関数値の定義は そのまま成り立つ。平均値が定義されない場合には、いろいろな意味での平均値を考えれば良いとなる。解析関数の場合の微分値も同じように重み付き平均値の意味で、統一的に定義でき、拡張される。 いわゆるくりこみ理論で無限値(部)を避けて有限値を捉える操作は、この一般的な原理で捉えられるのではないだろうか。2015.10.30.08:25)
上記のようにメモを取ったのであるが、基本的な概念、関数値とは何かと問うたのである。関数値とは、関数の値のことで、数に数を対応させるとき、その対応を与えるのが関数でよく f  等で表され x 座標の点 x  をy 座標の点 yに対応させるのが関数 y = f(x) で、放物線を表す2次関数 y=x^2, 直角双曲線を表す分数関数 y=1/x 等が典型的な例である。ここでは 関数の値 f(x) とは何かと問うたものである。結論を端的に表現するために、関数y=1/xの原点x=0における値を問題にしよう。 このグラフを思い出して、多くの人は困惑するだろう。なぜならば、x が正の方からゼロに近づけば 正の無限に発散し、xが負の方からゼロに近づけば負の無限大に発散するからである。最近発見されたゼロ除算、ゼロで割ることは、その関数値をゼロと解釈すれば良いという簡単なことを言っていて、ゼロ除算はそれを定義とすれば、ゼロ除算は 現代数学の中で未知の世界を拓くと述べてきた。しかし、これは誰でも直感するように、値ゼロは、 原点の周りの値の平均値であることを知り、この定義は自然なものであると 発見初期から認識されてきた。ところが、他方、極めて具体的な解析関数 W = e^{1/z} = 1 + 1/z + 1/2!z^2 + 1/3!z^3 +……. の点 z=0 における値がゼロ除算の結果1であるという結果に接して、人は驚嘆したものと考えられる。複素解析学では、無限位数の極、無限遠点の値を取ると考えられてきたからである。しかしながら、上記の考え、平均値で考えれば、値1をとることが 明確に分かる。実際、原点のコーシー積分表示をこの関数に適用すれば、値1が出てくることが簡単に分かる。そもそも、コーシー積分表示とは 関数の積分路上(簡単に点の周りの円周上での、 小さな円の取り方によらずに定まる)で平均値を取っていることに気づけば良い。
そこで、一般に関数値とは、考えている点の周りの平均値で定義するという原理を考える。
解析関数では 平均値が上手く定義できるから、孤立特異点で、逆に平均値で定義して、関数を拡張できる。しかし、解析的に延長されているとは言えないことに注意して置きたい。 連続関数などは 平均値が定義できるので、関数値の概念は 今までの関数値と同じ意味を有する。関数族では 平均値が上手く定義できない場合もあるが、そのような場合には、平均値のいろいろな考え方によって、関数値の意味が異なると考えよう。この先に、各論の問題が派生する。

以 上


Reality of the Division by Zero $z/0=0$

0 件のコメント:

コメントを投稿