1年で聖書を!
◆ 出エジプト記1-3
◆ マタイ14:1-21
◆ 出エジプト記1-3
◆ マタイ14:1-21
聖書のみことば エペソ3:14-21
神ご自身の満ち満ちたさまにまで、あなたがたが満たされますように。
―エペソ3:19
古代哲学者のアリストテレスによると、「自然は真空を嫌う」のだそうです。彼は観察に基づいて、自然が求めているのは、すべての空間が何かに埋められることで、その何かとは無色・無臭の空気であったりもする、と結論づけています。
信仰生活にも同じ原理が働いています。聖霊によって罪が示されると、私たちはすぐさま自分の努力で改善を試みようとします。悪い習慣を打ち負かすために、最善を尽くして努力します。しかし、汚れた思い、態度、欲望などを排除する試みは、ことごとく失敗します。ひとつ除けば、ひとつの空洞ができてしまうからです。つまり、ひとつの悪習を取り除くと、すぐに別の悪習が入り込みます。そして結局は、今までと同じか、もしくは以前よりも悪い状態になってしまいます。
信仰生活にも同じ原理が働いています。聖霊によって罪が示されると、私たちはすぐさま自分の努力で改善を試みようとします。悪い習慣を打ち負かすために、最善を尽くして努力します。しかし、汚れた思い、態度、欲望などを排除する試みは、ことごとく失敗します。ひとつ除けば、ひとつの空洞ができてしまうからです。つまり、ひとつの悪習を取り除くと、すぐに別の悪習が入り込みます。そして結局は、今までと同じか、もしくは以前よりも悪い状態になってしまいます。
真空の穴について考えると、パウロの言葉の大切さがわかります。パウロはエペソの人たちのために祈りました。「キリストが、あなたがたの信仰によって、あなたがたの心のうちに住んでいてくださいますように」(エペ3:17)。「人知をはるかに越えたキリストの愛を知ることができますように。こうして、神ご自身の満ち満ちたさまにまで、あなたがたが満たされますように」(19節)。
罪という問題の究極的な解決策は、その空洞をイエスの愛で満たすことです。私たちがイエスの愛でどんどん満たされるなら、悪が入り込む隙間はだんだん無くなっていきます。
イエスが入って来られる前に家を整理する必要はない。
イエスをお迎えしたなら、このお方がきちんとしてくださる。http://japanese-odb.org/2011/01/21/%E8%87%AA%E7%84%B6%E3%81%AF%E7%9C%9F%E7%A9%BA%E3%82%92%E5%AB%8C%E3%81%86/
イエスをお迎えしたなら、このお方がきちんとしてくださる。http://japanese-odb.org/2011/01/21/%E8%87%AA%E7%84%B6%E3%81%AF%E7%9C%9F%E7%A9%BA%E3%82%92%E5%AB%8C%E3%81%86/
再生核研究所声明335(2016.11.28) ゼロ除算における状況
ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更は かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
4. 孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること; \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線や法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。
資料:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
*156 Qian,T./Rodino,L.(eds.):
Mathematical Analysis, Probability and
Applications -Plenary Lectures: Isaac 2015, Macau, China.
(Springer Proceedings in Mathematics and Statistics, Vol. 177)
Sep. 2016 305 pp.
(Springer) 9783319419435 25,370.
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku堪らなく楽しい数学-ゼロで割ることを考える
以 上再生核研究所声明334(2016.11.25) 数理科学に興味を懷く方、発見に興味を持つ方 ― お願い
ゼロ除算1/0=0/0=z/0=0は拡張された分数の意味で、数学的に厳密に 確立され 既に自明ですが、物理などに現れる公式において、分数で分母がゼロになるとき、ゼロ除算の結果が自然に成り立っている場合が沢山発見されました。これは、物理学などに現れる分数には このように拡張された意味での分数になっているという意味で、自然を表現する物理学は、賢いと表現できます。― 物理学などで、多くの場合、拡張された意味での分数を表していたということです。― 数学では禁じられたこと、不可能性に最初に遭遇することとされてきた。
そこで、世に現れる多くの公式について、ゼロ除算の結果が成り立っているか、検証、吟味を行いたいと考えて、素人としていろいろ検討を始めていますが、大体200件の具体的な検討を行いました。世に分数で表現される公式は実に多いので、いろいろな方にそれぞれの専門分野や興味ある分野、関心のあるところで、分数におけるゼロ除算の状況を検討して頂ければ誠に幸いです。楽しい現象を発見できれば、大いに楽しめるのではないでしょうか。
ゼロ除算の注意をして置きます。 分子、分母が独立の時には、上記のように結果が述べられますが、分子、分母に関係がある場合には、いろいろな考え方が有って、結果は一意には一般には定まりませんが、一番有効な考え方は 次のようなゼロ除算算法です:
For any formal Laurent expansion around z=a,
f(z) = \sum_{n=-\infty}^{\infty} C_n (z - a)^n,
we obtain the identity, by the division by zero
f(a) = C_0.
Note that here, there is no problem on any convergence of the expansion at the point z = a. (Here, as convention, we consider 0^0=1.)
We note that:
If a point a is a pole of order n of an analytic function f(z) and we set g(z)=(z - a)^{n}f(z), then
f(a)=\frac{1}{n!}g^{(n)}(a).
We give examples.
If f(z)=\frac{e^{z}}{\left(z-1\right)^{3}}, then g(z) =e^{z} and n=3. So we have
f(1)=\frac{e}{3!}.
If f(z)=\frac{\log z}{\left(z-1\right)^{n}}, where n>1, then g(z) = \log z, and
f(1)=\left(-1\right)^{n-1}\frac{1}{n}.
最も典型的な例は tan 90度が0であることで、大きな影響がある。
以 上
追記:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
○ 堪らなく楽しい数学-ゼロで割ることを考える(28)
ゼロ除算1/0=0/0=z/0=0は拡張された分数の意味で、数学的に厳密に 確立され 既に自明ですが、物理などに現れる公式において、分数で分母がゼロになるとき、ゼロ除算の結果が自然に成り立っている場合が沢山発見されました。これは、物理学などに現れる分数には このように拡張された意味での分数になっているという意味で、自然を表現する物理学は、賢いと表現できます。― 物理学などで、多くの場合、拡張された意味での分数を表していたということです。― 数学では禁じられたこと、不可能性に最初に遭遇することとされてきた。
そこで、世に現れる多くの公式について、ゼロ除算の結果が成り立っているか、検証、吟味を行いたいと考えて、素人としていろいろ検討を始めていますが、大体200件の具体的な検討を行いました。世に分数で表現される公式は実に多いので、いろいろな方にそれぞれの専門分野や興味ある分野、関心のあるところで、分数におけるゼロ除算の状況を検討して頂ければ誠に幸いです。楽しい現象を発見できれば、大いに楽しめるのではないでしょうか。
ゼロ除算の注意をして置きます。 分子、分母が独立の時には、上記のように結果が述べられますが、分子、分母に関係がある場合には、いろいろな考え方が有って、結果は一意には一般には定まりませんが、一番有効な考え方は 次のようなゼロ除算算法です:
For any formal Laurent expansion around z=a,
f(z) = \sum_{n=-\infty}^{\infty} C_n (z - a)^n,
we obtain the identity, by the division by zero
f(a) = C_0.
Note that here, there is no problem on any convergence of the expansion at the point z = a. (Here, as convention, we consider 0^0=1.)
We note that:
If a point a is a pole of order n of an analytic function f(z) and we set g(z)=(z - a)^{n}f(z), then
f(a)=\frac{1}{n!}g^{(n)}(a).
We give examples.
If f(z)=\frac{e^{z}}{\left(z-1\right)^{3}}, then g(z) =e^{z} and n=3. So we have
f(1)=\frac{e}{3!}.
If f(z)=\frac{\log z}{\left(z-1\right)^{n}}, where n>1, then g(z) = \log z, and
f(1)=\left(-1\right)^{n-1}\frac{1}{n}.
最も典型的な例は tan 90度が0であることで、大きな影響がある。
以 上
追記:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
○ 堪らなく楽しい数学-ゼロで割ることを考える(28)
再生核研究所声明292(2016.03.25)
ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算
(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)
まず基本語をウイキペディアで確認して置こう:
アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。
https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%
非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。
ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。
ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。
この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。
ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。
何と ユークリッド空間で 平行線は ある意味で 全て原点で交わっている という、現象が明らかにされた。
もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。
そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。
ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。
この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。
平行線の交わりを考えてみる。交わらない異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。
一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。
ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。
以上
Matrices and Division by Zero z/0 = 0
0 件のコメント:
コメントを投稿