2016年11月20日日曜日

12位古代数学家的现代化成就

12位古代数学家的现代化成就

声明:本文由入驻搜狐公众平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。举报
  关注微信:DuoDaaMath每天获得更多数学趣文
  新浪微博:http://weibo.com/duodaa
  声明:这是我们2015年2月3日首发编译的文章,现在发现不少公众号转载但没有注明出处。包括今天中国科学院数学与系统科学研究院的公众号也转发了这篇文章,但出处不是我们(我相信不是故意的,因为没法了解到谁第一个发布了)。所以今天用原创声明再发布一次。
  原文来自BusinessInsider网站: http://www.businessinsider.com/12-classic-mathematicians-2014-7
  数学已经成为人类步入现代化的核心工具与中心思想。大到卫星上天,小到一个app应用,都离不开数学——只是你是否知道而已。
  但是,请和我们哆嗒数学网的小编一起想象一下。远在数学还没有给我们带来计算机、量子力学和卫星定位系统之前的古代,一些最聪明的大脑已经在不断的发现他们的数学成就。这些发现建立了最基本的数学思想和工具,带领我们走进了现代化的生活。这是多么神奇的事情。
  下面列出的12位数学家,就是这些人中的佼佼者。他们的发现,形成了世界走入现代化的数学基石,也是我们步入现代生活最重要的一系列成就。
  毕达哥拉斯(约前500)
  
  、
  毕达哥拉斯其实不只一位,他有很多追随者,他们形成了一个学派。他们对数的崇拜有着宗教的神秘主义色彩。带着对神的崇敬来研究几何与数字。
  毕达哥拉斯学派最有名的数学成果当属毕达哥拉斯定理:对于一个直角三角形,两直角边的平方和等于斜边的平方。这是平面几何最基本的结果之一。
  毕达哥拉斯学派的故事说明了数学和这样宗教如果结合是多么的危险。毕达哥拉斯学派神化的整数,认为整数是宇宙的基石。他们研究几何与音乐,只要和数量相关的东西都认为是两个整数的商。
  毕达哥拉斯的一个追随者道如何把一个直角边长等于1的等腰直角三角形的斜边用两个整数的商表示出来。但是他的结果是:这是不可能的。用现代人的说法就是,2的平方根是一个无理数。
  故事的结局是悲惨的。当这位追随者把它的关于可能存在无理数——一种不能表示成两整数之商的数——的事实告诉同伴时。同伴们很震惊,但也很愤怒,把这位有重大发现的追随者装上了船,扔进水里淹死了。
  欧几里得(约前300)
  
  欧几里得是古西腊最伟大的数学家之一。
  在他的传世之作《几何原本》中,欧几里得建议了一个几何学的框架。正当诸如毕达哥拉斯们的其他古西腊先哲们还在纠结于关于数的问题的时候,欧几里得已经开始引进他严谨的论证体系了:从为数学多的关于点、线的公理出发,通过不断演绎推理,建立了一套在当时最系统化的几何学。
  这种从公理开始,不断推导结果,而每个新结果都由之前推导出的结果为依据的严谨论证思想,可能是2000多年的历史长河中,最据支配地位的思想。
  阿基米德(约前287-212)
  
  阿基米德可能是所有时代最伟大的数学家。他最被人熟知的贡献是他早期物理学的发现。他发现了杠杆原理,和浮力定律。一个大家都知道的传说:有一天,阿基米德在洗澡,看见洗澡水从澡盆里的漫了出来,于是他兴奋,裸奔上了大街,嘴里兴奋地尖叫:“我发现了!”
  作为数学家的阿基米德甚至比他在物理中做得更好。他已经能够把圆周率估算到一个非常好的精确值,以及计算抛物线围成的一些图形的面积。
  这些成就让人惊奇的真正原因是,阿基米德使用的计算方法和1800年后牛顿和莱布尼兹发明的微积分中的计算方法惊人的相似。他用不断的添加更细致多边形的来接近图形,这样多边形的面积就会和想要计算的面积的差距越来越小。这样的方法,让人强烈的联想到现代的极限思想。阿基米德这样的数学智慧,领先了他所处时代将近两千年。
  花拉子米(780-850)
  
  花拉子米是9世纪的数学家,他创造了很多基础的计算技术与方法。他最大的贡献是他发明了一套做算术和解方程的形式化、系统化的办法。花拉子米在他的著作中,使用了印度人的发明的阿拉伯数字体系并流传到了欧洲。而阿拉伯数字体系比之前用的罗马数字体系或者其他非按位数字体系,在加减乘除的表示方面更为简洁。
  花拉子米还建立了一套解基本方程的规则体系,比如4x + 8 = 2, x?2;- 8 = 4,在今天这套体系叫做代数。实际上,“代数”这个词就来源于他书中解方程那部分内容的标题,还有一个词是“算法”,它表示解决数学问题的系统流程,这其实是花拉子米的拉丁文名字。
  纳皮尔(1550-1617)
  
  这个榜单的其他数学家在各个数学分支都有大量的贡献,而纳皮尔只有一个发明,但这个发明极为重要:对数。简单的说,一个数的对数让我们知道了这个数额数量级。
  用现在的话来说,对数有一个“底数”,一个数的对数就是得到一个数,使得这个底数的那么多次方等于这个数。比如,以10为底数,10的对数是1,100的对数是2。因为10的1次方等于10,10的平方,就是2次方等于100。
  对数之所以这么有用,是一个重要原因是由于它的一些性质:对数能把乘法变成加法,把除法变成减法。更确切的讲,两个数乘积的对数等于这两个数分别取对数在加起来。同样,两数商的对数等于两数对数的差。
  在没有计算机的年代,这个性质打打降低计算的难度。对两个非常大或者非常精细的小数做乘除法要比做加减法的时间长得多。所以,如果有人要对两个大数做乘法,他可以先查对数表的得到两个数的对数,在加起来,然后再用对数表返查得到结果。
  一些计算工具,比如说计算尺,利用对数来做快速计算。这种快速计算器在科学和航海中派上了打用场,我们可以非常快得做一些大数的计算。
  很多用数量级来衡量计量单位也是用对数来衡量的。比如地震中的里氏震级,以及衡量声音大小的分贝。
  开普勒(1571-1630)
  
  开普勒是一位天才的几何学家,他把他的数学能力强化了人们对太阳系的认识。开普勒曾经是伟大的天文观测家的第谷·布拉赫助手,而布拉赫拥有一些在当时最细致的行星运动的记录资料。通过分析这些资料,开普勒能够确定和改进哥白尼的太阳系观点:行星围着太阳转,而转动的时间是基于椭圆形状的行星轨道用并用精确定义的数学定律来描述的。
  开普勒定律是一个伟大发现,因为它是对物理过程精确且简洁描述。像行星绕太阳的轨道这样,我们世界的事物遵循这各种各样的规律。20世纪的物理学家维格纳有一个优美的表述,“数学无理由的有效性”。开普勒定律就是这种无理由的有效性的早期例子。
  开普勒定律也为牛顿发现他的牛顿运动律提供了条件,尤其是万有引力定律。开普勒对天体力学的贡献让美国国家航空航天局(NASA)将研究太阳系以外的行星的项目以他的名字命名,叫做开普勒任务。
  笛卡尔(1596-1650)
  
  笛卡尔最被人熟知的是他对哲学的贡献。他提出了精神与物质二元论(心物二元论),他还有一句名言:“我思故我在。”。但是,我们今天使用的大部分数学都欠笛卡尔一份“小恩情”。
  笛卡尔对数学最重要的一份贡献就是创立了解析几何。数学在笛卡尔之前的历史长河中,代数和几何是互不联系的两个学科。一方面,我们有我们对数字和未知量进行符号化和抽象的操作。另一方面,我们又对一些平面图形和立体图形进行研究。
  笛卡尔的解析几何统一了这两个领域。他开拓了一种把代数式和方程用坐标平面上的直线或者曲线表示的思想。他的这种基本思想至在今天的中学课程中还在学习。学生们还在练习把y=3x+5这样的方程画成直线,或者把y = x?2; – 4这样的方程画成抛物线。
  这种几何与代数的结合是之后创立微积分的重要前置条件,同样,它还理所当然的还是现代数学的核心思想。为了纪念的卡尔如此重要的奠基性工作,我们把他发明坐标系定名为“笛卡尔坐标平面”。
  帕斯卡(1623-1662)
  
  法国数学家帕斯卡和这榜单的其他很多数学家一样,在数学的很多领域都有贡献。帕斯卡三角形(中国叫做杨辉三角)提供了一套计算二项式系数的漂亮方法,而二项式系数在代数和其他分支非常重要。他还发明了世界上第一台机械计算器,是现代计算机的早期原始版本。
  帕斯卡同样还是概率论的创立者之一,他在分析游戏的取胜机会时候开创了这个理论。帕斯卡关于基本概率的工作,让我们开始有能力用数学方法理解机会与风险。
  帕斯卡把他的概率理论用于神学研究,他提出“帕斯卡赌局”的理论,用于说明为什么我们应该相信神的存在。
  牛顿(1642-1727)
  
  任何一个关于伟大数学家的榜单都不会没有牛顿。他发明了微积分(这个成就与下一位数学家分享),数学第一次可以系统的描述物体在时空中的变化。牛顿是在发展他的物理理论的时候发明微积分的。
  微积分是描述运动最自然的语言。汽车的速度是位移的变化率,或者说是位移的导数。把一个铁球从高楼上释放下落,他的速度是变化的,速度的变化率或者说速度的导数就是加速度。牛顿还知道加速度是地心引力作用于铁球质量上的结果。
  牛顿的物理学还是整个人类世界物理观的里程碑。早期的物理学家和天文学家,比如前面提到的开普勒,他们已经知道天体的运动和一些变量有关。但牛顿和其他的一些物理学家借助数学工具,能让人知道为什么天体运动和这些参数有关。
  更进一步,牛顿定律是一个普适性理论,它让人明白,让铁球加速下落的力和让月亮绕地球转的力都是相同的力——地心引力。同样的物理定律被应用于宇宙的任何地方,成为科学的核心理论,也被已知的证据支持。
  莱布尼兹(1646-1716)
  
  在牛顿于英格兰发明微积分的同时,莱布尼兹在德国独立的发明了微积分,然后在数学家之间引发了一场关于微积分发明权的争论。但无论如何,莱布尼兹当时使用的很多微积分的符号一直沿用至今。
  莱布尼兹同时在各个方面预见了数学之后的发展。他笃信理性主义,他专注的形式符号逻辑在19世纪末20世纪初发展成了现代数理逻辑和集合论。莱布尼兹和帕斯卡一样还参与了机械计算器的改进的研究。
  贝叶斯(1701-1761)
  
  贝叶斯提供了关于概率论与数理统计最重要的工具之一。这个工具让我们对概率的研究能够进行更加艰巨的探索。
  如果我们知道一个事件发生的内在机制,那么我们计算着事件的概率是非常简单的。用基本的计算,我们能算出打扑克梭哈时,得到同花顺的概率,或者扔硬币时,连续5次都是正面的概率,再或者彩票中奖的概率。
  但更多时候,我们更关心把上述问题反过来的情况。我们不去计算基于知道发生机制的事件的概率,而是基于观察到的现象,想得到和了解不知道发生机制的事件的发生的可能性。
  我们需要了解在一些情况下基于观测现象背后的关联性。比如医学(如果检测为阳性,患病的可能有多大?)、比如社会科学(基于历史数据,最好的解释通货膨胀与失业率之间关系的模型是什么?)、比如日常生活(如果女孩同意和我去另外一家酒吧,他对我有意思的可能性有多大?)。
  贝叶斯定理提供了一个形式化的工具,让我们能回答这些问题。当一种事情已经发生的条件下,定理让我们能计算这样的概率,当特定事件发生时,鉴于观测结果,基于我们把观测结果纳入特定事件看是否发生,这样能同时得到先前事件在特定事件下发生的可能性。
  贝叶斯定理是一个分析信息缘由的强大工具,它还是整个统计学思想的底层框架。
  欧拉(1707-1783)
  
  在牛顿和莱布尼兹之后,欧拉接过了对微积分的研究的工作。他引入了现代函数的概念:一条规则,或者说几条规则,用于把一个数变化成另外一个数。在当今数学中,这个概念把所以不相关的分支联系到了一起:线性方程、多项式方程、三角几何,甚至我们测量平面上两点间的距离的办法都能理解和表示为一系列函数以及操作它们的办法。
  欧拉同样发展了幂级数理论:一个把复杂函数用无限个简单项之和来表示的方法。他研究了三角函数和指数函数的幂级数,让他发现了一个特别的,但很常用很重要的一个公式,著名的欧拉公式e^(iπ)+1=0。
  欧拉还是最多产的数学家之一,在很多领域都有贡献。他对哥尼斯堡七桥问题的解决被认为是最早的拓扑和图论成果之一。
  关注微信:DuoDaaMath每天获得更多数学趣文
  新浪微博:http://weibo.com/duodaa


ゼロ除算はどうでしょうか:

再生核研究所声明316(2016.08.19) ゼロ除算における誤解
(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
                                                     
6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

以 上
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
以 上
追記:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory6, 51-58.

再生核研究所声明310(2016.06.29) ゼロ除算の自明さについて
人間の感性の観点から、ゼロ除算の自明さについて触れて置きたい。ゼロ除算の発見は誠に奇妙な事件である。まずは、近似の方法から自然に導かれた結果であるが、結果が全然予想されたことのない、とんでもないことであったので、これは何だと衝撃を受け、相当にその衝撃は続いた。まずは、数学的な論理に間違いがないか、厳重に点検を行い、それでも信じられなかったので、多くの友人、知人に意見を求めた。高橋眞映山形大学名誉教授のゼロ除算の一意性定理は大事だったので、特に厳重に検討した。多くの友人も厳重に時間をかけて検討した経過がよく思い出される。その他、いろいろな導入が発見されても、信じられない心境は1年を超えて続いたと言える。数学的に厳格に、論理的に確立しても 心情的に受け入れられない感情 が永く続いた。そのような心境を相当な人たちが抱いたことが国際的な交流でも良く分かる。中々受け入れらない、ゼロ除算の結果はそうだと受け入れられない、認められない空気であった。ゼロ除算の発展は世界史上の事件であるから、経過など出来るだけ記録するように努めてきた。
要するに、世界中の教科書、学術書、定説と全く違う結果が 世に現れたのである。慎重に、慎重に畏れを抱いて研究を進めたのは 当然である。
そこで、証拠のような具体例の発見に努めた。明確な確信を抱くために沢山の例を発見することとした。最初の2,3件の発見が特に難しかった。内容は次の論文に、招待され、出版された: http://www.ijapm.org/show-63-504-1.html :
ゼロ除算を含む、山田体の発見、
原点の鏡像が(原点に中心をもつ円に関する)無限遠点でなく ゼロであること、
x,y直角座標系で y軸の勾配がゼロであること、
同軸2輪回転からの、ゼロ除算の物理的な意味付け、

これらの成果を日本数学会代数学分科会で発表し、また、ゼロ除算の解説(2015.1.14)を1000部印刷広く配布してきた。2年間の時間の経過とともに我々の数学として、実在感が確立してきた。その後、広範にゼロ除算がいろいろなところに現れていることが沢山発見され、やがて、ゼロ除算は自明であり数学の初歩的な欠落部分であるとの確信を深めるようになってきている。
単に数学の理論だけでなく、いろいろな具体例が認識の有り様を、感性を変えることが分かる。そこで、何もかも分かったという心境に至るには、素朴な具体例で、何もかも当たり前であるという心理状況に至ることが大事であるが、それは、環境で心自体が変わる様をしめしている。本来1つの論文であった原稿は 招待されたため次の2つの論文に出版される:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra
& Matrix Theory, 6, 51-58.
Division by Zero z/0 = 0 in Euclidean Spaces:
International Journal of Mathematics and Computation 9 Vol. 28; Issue  1, 2017)

沢山の具体例が述べられていて、ゼロ除算が基本的な数学であることは、既に確立していると考えられる。沢山の具体例が、そのような心境に至らしめている。
ゼロ除算の自明さを論理ではなく、簡単に 直感的な説明として述べたい。
基本的な関数y=1/xを考え、そのグラフを見よう。原点の値は考えないとしているが、考えるとすれば、値は何だろうか? ゼロではないか と 思えば、ゼロ除算は正解である。それで十分である。その定義から、応用や意味付けを検討すれば良い。― 誰でも値は ゼロであると考えるのではないだろうか。中心だから、真ん中だから。あるいは平均値だからと考えるのではないだろうか。それで良い。
0/0=0 には違う説明が必要である。条件付き確率を考えよう。 A が起きたという条件の下で、B が起きる条件付き確率を考えよう。 その確率P(B|A) は AとBの共通事象ABの確率P(AB) と A が起きる確率P(A)との比 P(B|A)=P(AB)/P(A) で与えられる。もし、Aが起きなければ、すなわち、P(A) =0 ならば、もちろん、P(AB) =0. 意味を考えても分かるようにその時当然、P(B|A) =0である。 すなわち、0/0=0は 当たり前である。

以 上

再生核研究所声明308(2016.06.27) ゼロ除算とは何か、始めてのゼロ除算、ゼロで割ること

相当な記録、解説が蓄積されてきたので、外観する意味で表題の下で簡単に纏めて置こう。
先ず、ゼロ除算とは 加,減,乗,除の四則演算において 割る時にどうしてゼロで割れないかの問題を広く表す。ゼロで割ることを考えることである。西暦628年インドでゼロが文献上の記録として現れて以来議論されてきた。ある専門家によればアリストテレスが物理的にゼロ除算を最初に考え、不可能であるとされたという。割り算を掛け算の逆と考えれば、ゼロで割ることは 割られる数がゼロでなければ、不可能であることが簡単に証明されてしまうが、物理法則などには、分数式が現れて、分母がゼロである場合興味深いとして、現代でもいろいろ問題にされ、インターネット上をにぎわしている。この件では、ブラックホールの理論や相対性理論の関係からアインシュタインの人生最大の懸案の問題であるという言葉に象徴される。他の大きな関心として、計算機がゼロ除算にあって計算機障害を起こした事件から、ゼロ除算障害回避を目指して新しい数体系を考えている相当なグループが存在する。
このような永い歴史に対して、ゼロ除算を可能にする自然で簡単な体系が山田体として確立され、四則演算は 簡単な修正で ゼロ除算を含めていつでも可能であることが明らかになった。しかしながら、ここには分数,割り算の意味を自然に拡張して、可能になったという、新しい概念があるので、扱いには大いに気を付ける必要がある。分母がゼロである場合、ある意味で考えられるという、考え方である。ここは、従来、分数で、分母がゼロになる場合、微分学の基礎概念である、極限で考えるに対して、新しい意味付けを与える方法が発見された。これは、無限級数f(x) = \sum_{n= -\infty}^{\infty} C_n (x –a)^n に対して f(a)=C_0 と簡単に述べられる。具体例で述べれば、関数e^{xt}/(x^2)の原点における値はt^2/2として,関数cos(xt)/(x^3)の原点での値は恒等的にゼロとして意味を有する。このような値の実際的な意味が、幾何学、解析学、解析幾何学,微分方程式など広範に現れて、従来分母がゼロになる場合に避けてきたところ、いろいろな意味と解釈が可能であることが分かってきた。
新しい、状況とは何かであるが、第一には、我々の空間に対する考えに新しい世界が現れたことである。基本的な関数y=1/z の原点での値がゼロと定義されることから、従来無限遠点.無限と考えられていた想像上の点が 実はゼロで表されることになる。そこで、無限が関与する数学が改められることである。極限値として、+、マイナス、無限、あるいは複素平面で、無限は考えられるが、それらは定まった数ではなく、定まった数としての無限の存在を否定する数学になっている。
それで、古典的な結果、原点の原点に中心をもつ円に関する鏡像は 無限遠点ではなく、ゼロであること無限遠点はゼロで表されることなど、 基本的な変更が 要求される。ゼロ除算は可能であり、我々の空間の認識は間違っているということになる。
解析関数は孤立特異点で、と言って、無限遠点の値を取るという考えは改められ、特異点の近くで、幾らでも無限遠点の近くの値を取るものの、特異点では、有限確定値を取ると改められる。
このような有限確定値の具体的な意味付けがいろいろ現れた。顕著な例は、(x,y) 直交座標系で y軸の勾配はゼロで、微分学で微分係数が +、マイナス、無限として極限値が存在するとき、その時、微分係数はゼロであると定義すると、解析学も幾何学も上手く調和して、微分学の多くの公式が付加条件なしに一般的に成り立ち、解析幾何学と調和がとれていることが明らかにされた。数学の相当な部分の修正が必要であり、数学をより美しく、統一的にスッキリと纏められる。
典型的な例として、半径Rの円を考えてRを無限に飛ばすことを考えると、円の面積は当然、限りなく大きくなるが、Rが更には大きくできないとき、円の面積は突然ゼロになることが、解析幾何学とゼロ除算で導かれた。これはRが更には大きくできないときが、円板が半空間、円が直線になる場合で、半平面の面積がゼロであることを示している。このことはある大きな世界を覗かせていて、破壊現象の記述無限の考え方に大きな変革をもたらす。平行線の概念と空間の概念は、新しい世界観であるから、次でより詳しく触れている:

再生核研究所声明306(2016.06.21)平行線公理、非ユークリッド幾何学、そしてゼロ除算

以 上

0 件のコメント:

コメントを投稿