小4、中2全4教科で過去最高点…国際学力調査
国際教育到達度評価学会(本部・アムステルダム)は29日、57の国と地域の小学4年生と中学2年生を対象に算数・数学と理科の基礎学力を測る「国際数学・理科教育動向調査(TIMSS)」の結果を公表した。
日本は小4、中2の全4教科で過去最高の得点を記録し、中2の理科はこれまでで最高の2位となった。中2は学習内容を増やした「脱ゆとり教育」のもとで学んでおり、文部科学省は「その効果が表れた」と分析している。
調査が現在の形式になった1995年の世界の標準値を500点と設定し、偏差値化した得点で国・地域ごとに比較した。トップは4教科ともシンガポールで、日本や韓国、台湾、香港などのアジア勢が上位の大半を占めた。
日本は中2理科が571点(前回比13点増)で4位から2位に、小4理科も569点(同10点増)で4位から3位に上がった。
(ここまで363文字 / 残り384文字)http://www.yomiuri.co.jp/national/20161129-OYT1T50126.html?from=tw
再生核研究所声明222(2015.4.8)
日本の代表的な数学として ゼロ除算の研究の推進を求める
ゼロ除算の成果は 2015.3.23 明治大学で開催された日本数学会で(プログラムは5200部印刷、インターネットで公開)、海外約200名に経過と成果の発表を予告して 正規に公開された。簡単な解説記事も約200部学会で配布された。インターネットを用いて1年以上も広く国際的に議論していて、骨格の論文も出版後1年以上も経過していることもあり、成果と経過は一応の諒解が広く得られたと考えても良いと判断される。経過などについては 次の一連の声明を参照:
再生核研究所声明148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30) ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17) ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20) ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30) 掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15) ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
再生核研究所声明192(2014.12.27) 無限遠点から観る、人生、世界
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)―
再生核研究所声明194(2015.1.2) 大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3) ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4) ゼロ除算に於ける山根の解釈100= 0x0について
再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
再生核研究所声明202(2015.2.2) ゼロ除算100/0=0,0/0=0誕生1周年記念声明 ― ゼロ除算の現状と期待
再生核研究所声明215(2015.3.11) ゼロ除算の教え
日本の数学が、欧米先進国のレベルに達していることは、国際研究環境の実情を見ても広く認められる。しかしながら、初等教育から大学学部レベルの基本的な数学において 日本の貢献は 残念ながら特に見当たらないと言わざるを得ない。これは日本の数学が 大衆レベルでは 世界に貢献していないことを意味する。これについて 関孝和の微積分や行列式の発見が想起されるが、世界の数学史に具体的な影響、貢献ができなかったこともあって 関孝和の天才的な業績は 残念ながら国際的に認知されているとは言えない。
そこで、基本的なゼロ除算、すなわち、四則演算において ゼロで割れないとされてきたことが、何でもゼロで割れば ゼロであるとの基本的な結果は、世界の数学界における 日本の数学の顕著なものとして 世界に定着させる 良い題材ではないだろうか。
内容の焦点としてはまず:
ゼロ除算の発見、
道脇方式によるゼロ除算の意味付け、除算の定義、
高橋のゼロ除算の一意性、
衝突における山根の現象の解釈、
の4点が挙げられる。
6歳の道脇愛羽さんが、ゼロ除算は 除算の固有の意味から自明であると述べられていることからも分かるように、ゼロ除算は、ピタゴラスの定理を超えた基本的な結果であると考えられる。
ゼロ除算の研究の発展は 日本の代表的な数学である 佐藤の超関数の理論と密接な関係にあり(再生核研究所声明200)、他方、欧米では Aristotélēs の世界観、universe は連続である との偏見に陥っている現状がある。 最後にゼロ除算の意義 に述べられているように ゼロ除算の研究は 日本の数学として発展させる絶好の分野であると考えられる。 そこで、広く関係者に研究の推進と結果の重要性についての理解と協力を求めたい。
ゼロ除算の意義:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 1/0=0, 0/0=0をもたらしたこと。
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、 独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。
11)ゼロ除算が可能であるか否かの議論について:
現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。
12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として受け入れることである。
以 上
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269
1+0=1 1ー0=0 1×0=0 では、1/0・・・・・・・・・幾つでしょうか。
0??? 本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・
割り算を掛け算の逆だと定義した人は、誰でしょう???
まして、10個のリンゴを0人で分けた際に、取り分 が∞個の小さな部分が取り分は、どう考えてもおかしい・・・・
受け取る人がいないわけですから、取り分は0ではないでしょうか。 すなわち何でも0で割れば、0が正しいのではないでしょうか。じゃあ聞くけど、∞個は、どれだけですか???
小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・
加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでもセロであるという意外な結果が得られた。
無限遠点は存在するが、無限大という数は存在しない・・・・
天動説・・・・・・∞
地動説・・・・・・0
1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html …… →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
何とゼロ除算は、可能になるだろうと April 12, 2011 に 公に 予想されていたことを 発見した。
多くの数学で できないが、できるようになってきた経緯から述べられたものである。
Dividing by Nothing
by Alberto Martinez
It is well known that you cannot divide a number by zero. Math teachers write, for example, 24 ÷ 0 = undefined.
After all, other operations that seemed impossible for centuries, such as subtracting a greater number from a lesser, or taking roots of negative numbers, are now common. In mathematics, sometimes the impossible becomes possible, often with good reason.
Posted April 12, 2011More Discoverhttps://notevenpast.org/dividing-nothing/
明治5年(1872)
地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0
地球人はどうして、ゼロ除算1300年以上もできなかったのか? 2015.7.24.9:10 意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 生態系では、人類が がん細胞であった とならないとも 限らないのでは?
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
再生核研究所声明325(2016.10.14)
ゼロ除算の状況について ー 研究・教育活動への参加を求めて
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更は かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド空間とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、ゼロ除算の教育、研究は日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の協力、参加をお願いしたい。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。数学はより美しく、完全であった。さらに、数学の奥深い世界を示している。ゼロ除算を含む体の構造、山田体が確立している。その考えは、殆ど当たり前の従来の演算の修正であるが、分数における考え方に新規で重要、面白い、概念がある。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童・生徒たちにも歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。応用する。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直交座標系で y軸の勾配はゼロであること。真無限における破壊現象、接線などの新しい性質、解析幾何学との美しい関係と調和。すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること。行列式と破壊現象の美しい関係など。三角関数や初等関数でも考え方を修正、補充する。直線とは、そもそも、従来の直線に原点を加えたもので、平行線の公理は実は成り立たず、我々の世界は、ユークリッド空間でも、いわゆる非ユークリッド幾何学でもない、新しい空間である。原点は、あらゆる直線の中心になっている。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の発展の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し ― ゼロ除算算法、広範な応用を展開する。最も顕著な例は、tan 90度 の値がゼロであることで、いろいろ幾何学的な説明は、我々の空間の認識を変えるのに教育的で楽しい題材である。特に微分係数が正や負の無限大に収束(発散)する時、微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法で統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。新しい、関数の素性が見えてくる。
複素解析学において 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点自身では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学的な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円に関する鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考え方の修正は、ユークリッド以来、我々の空間に対する認識の世界史上における大きな変更であり、数学を越えた世界観の変更を意味している。これはアリストテレスの世界の連続性の概念を変えるもので強力な不連続性を示している。 ― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響があり、さらに哲学、宗教、文化への大きな影響がある。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、数学者ばかりではなく、人類の名誉にも関わることである。実際、ゼロ除算の歴史は 止むことのない闘争の歴史とともに人類の恥ずべき人類の愚かさの象徴となるだろう。世間ではゼロ除算について不適切な情報が溢れていて 今尚奇怪で抽象的な議論によって混乱していると言える。― 美しい世界が拓けているのに、誰がそれを閉ざそうと、隠したいと、無視したいと考えられるだろうか。我々は間違いを含む、不適切な数学を教えていると言える: ― 再生核研究所声明 41: 世界史、大義、評価、神、最後の審判 ―。
地動説のように真実は、実体は既に明らかである。 ― 研究と研究成果の活用の推進を 大きな夢を懐きながら 要請したい。 研究課題は基礎的で関与する分野は広い、いろいろな方の研究・教育活動への参加を求めたい。素人でも数学の研究に参加できる新しい初歩的な数学を沢山含んでいる。ゼロ除算は発展中の世界史上の事件、問題であると言える。
以 上
追記:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf DOI:10.12732/ijam.v27i2.9.
*156 Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and
Applications -Plenary Lectures: Isaac 2015, Macau, China.
(Springer Proceedings in Mathematics and Statistics, Vol. 177) Sep. 2016 305 pp. (Springer)
Paper:Division by Zero z/0 = 0 in Euclidean Spaces
Dear Prof. Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
With reference to above, The Editor-in-Chief IJMC (Prof. Haydar Akca) accepted the your paper after getting positive and supporting respond from the reviewer.
Now, we inform you that your paper is accepted for next issue of International Journal of Mathematics and Computation 9 Vol. 28; Issue 1, 2017),
数学基礎学力研究会のホームページ
URLは
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
宇宙消滅説:宇宙が、どんどんドン 拡大を続けると やがて 突然初めの段階 すなわち 0に戻るのではないだろうか。 ゼロ除算は、そのような事を言っているように思われる。 2015年12月3日 10:38
Reality of the Division by Zero $z/0=0$
再生核研究所声明327(2016.10.18) 数学教育についての提案
次で、数学教育の重要性、効用性について触れている:
再生核研究所声明313(2016.08.01) 良い数学教育の推進を
― 数学を通して、人類が交流でき、世には道理、秩序が 存在すると理解できるだろう。分かり易いスポーツを通して、ドラマを見て、芸術を通して理解するは 世に多いが、数学の効用をここでは強調したい。道理、秩序に対する認識には 数学の効用は大きく、上記 公正の原則の理解にも 大きく寄与するのではないだろうか。数学教育の充実を国際的な視点で提案したい。その留意点を纏めて置きたい:
1) 世には共通の論理があることを理解し、論理的な思考を学習する。
2) 数学の論理的な面には、美しさとuniverseの、世の秩序を述べていることを学ぶ。
3) 非ユークリッド幾何学の出現過程を良く学び、真理を追求する精神と感情と論理の関係を学ぶ。批判精神、理性、客観性について学ぶ。予断と偏見、思い込み、囚われやすい人間の精神を掘り下げる。
ここで、数学教育の充実とは、いわゆる数学の学力、問題解決に重点をおいた従来の学習ではなく、上記のような数学教育を通して身に付く数学の精神に重点をおいた教育である。他方数学の学力を付けることに偏りすぎたり、学力を競争させたりして 世に多くの数学嫌いな人たちを育てていることを大いに反省したい。数学の美しさ、楽しさを教えることが第一であると心がけなければならない。
数学愛好者の増大は かつて和算が広く民衆に普及していたように、環境にも優しく、人間の修行にも、精神衛生上も、また創造性を養い、考える力を育成するにも大いに貢献するのではないだろうか。囲碁や将棋、歌会、俳句会など良い趣味集団を構成しているが、数学愛好者クラブなど大いに進められるべきではないだろうか。新聞やテレビ、マスコミ、週刊誌などでもどんどん話題を取り上げ、また奨励されるべきではないだろうか。社会の浄化と低俗化防止にも貢献するのではないだろうか。―
と述べた。古くはプラトン学派の門に、幾何学知らざる者この門をくぐるべからず、ナポレオンが軍隊を強くするには数学の教育が大事であると述べていることや、現中国政府の数学重視の姿勢も注目される。
ここでは、明確な提案が閃いたので纏めて置きたい。まず現状の分析と問題であるが、数学は選別、能力を評価する重要な科目になっていて、受験勉強の強い枠に縛られてカリキュラムは相当に厳格に範囲が定められている。そのため限られた範囲での特訓の要素が強く、現実には理想的な教育の有り様からの乖離が甚だしい状態と言える。標語的には、ゆっくり面白いところを追求しようとすれば、そんなことでは、時間内に解答できない、そのようなものは型として、このように対応すれば良いと、薄っぺらな教育内容になり、多くの場合才能ある学生の みずみずしい知的好奇心 を失なわせ、薄っぺらな学習で数学そのものを嫌う学生を多く育てている現実があると考えられる。これは創造性や好奇心を育てる教育と いわゆる学力をつけるための勉強の乖離の問題である。さらに顕著な事実として、高校までの数学と大学での数学の大きな乖離は 相当に広く認められる現象ではないだろうか。多くの高校生は、大学に入って、数学とはそんなに広く、深く、雄大なものであるかと知って驚くのではないだろうか? また、教育現場の感じも相当に違う感じを受けるだろう。
― このような乖離は、研究成果と学部教育の内容についても言えることに注意しておきたい ―。
背に腹は変えられない、受験勉強は無視できない現実であるから、この問題を改善する具体的な提案として、例えば、週1時間とか、月1時間、カリキュラムにとらわれない数学の時間を用意して、カリキュラムに関係する素材や、新しい話題、面白い歴史的な話題から題材をとり、本来数学の教育に求められるような方向での教育を行うようにする。このような時間は、先生の新鮮な研究、研修にも繋がる面があって 先生の柔軟な精神の涵養にも良いのではないだろうか。さらに視野を広げるためにも、いろいろな講演会の企画なども良いのではないだろうか? 提案したい。数理科学の文化の裾野を広げる努力をしたい。近年は教育・研究環境の厳しさと専門の深さ、困難さで、専門的に深くなりすぎて、数理科学など幅の広さや基礎への関わりが薄くなっているように感じられる。その様な事情を反映させて、教育が疎かになる傾向にもなっているのではないかと危惧される。成果が数字に表されるような貧しい教育である。
数学の教育については、下記も参照:
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明283 (2016.2.8) 受験勉強が過熱化した場合の危惧について
再生核研究所声明260 (2015.12.07) 受験勉強、嫌な予感がした ― 受験勉強が過熱化した場合の弊害
再生核研究所声明 187 (2014.12.8)工科系における数学教育について
以 上
再生核研究所声明306(2016.06.21) 平行線公理、非ユークリッド幾何学、そしてゼロ除算
表題について、山間部を散歩している折り新鮮な感覚で、想いが湧いて来た。新しい幾何学の発見で、ボーヤイ・ヤーノシュが父に言われた 平行線の公理を証明できたら、地球の大きさ程のダイヤモンドほどの値打ちがあると言われて、敢然と証明に取り掛かった姿とその帰結である。また、ユークリッドが海岸を散歩しながら幾何学を建設していく情景が鮮やかに想い出された(Liwanovaの『新しい幾何学の発見』(のちに『ロバチェフスキーの世界』と改題)(東京図書刊行)。この件、既に声明に述べているので、まずは確認したい:
再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)
まず基本語をウイキペデアで確認して置こう:
https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9
アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。
https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%
非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。
ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。
ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。
この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。
ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。
何と ユークリッド空間で 平行線は ある意味で全て原点で交わっている という、現象が明らかにされた。
もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。
そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。
ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。
この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。
平行線の交わりを考えてみる。交わる異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。
一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。
ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。
以上
上記で、数学的に大事な観点は、ユークリッド自身そうであったが、平行線公理は真理で、証明されるべきもの、幾何学は絶対的な真理であると非ユークリッド幾何学の出現まで、考えられてきたということである。2000年を超える世界観であった事実である。そこで、平行線の公理を証明しようと多くの人が挑戦してきたが、非ユークリッド幾何学の出現まで不可能であった。実は、証明できない命題であったという全く意外な帰結であった。真に新しい、概念、世界観であった。証明できない命題の存在である。それこそ、世界観を変える、驚嘆すべき世界史上の事件であったと言える。
この事件に関してゼロ除算の発見は、全く異なる世界観を明らかにしている。ユークリッドそして、非ユークリッド幾何学の3人の発見者にとって、全く想像ができなかった、新しい事実である。平行線が 無限の先で交わっているとは ユークリッドは考えなかったと思われるが、近代では、無限の先で交わっていると考えられて来ている。― これには、アーベル、オイラー、リーマンなどの考えが存在する。このような考えは、ここ100年以上、世界の常識、定説になっている。ところがゼロ除算では、無限遠点は 数ではゼロが対応していて、平行線は代数的に原点で交わっている、すべての直線は代数的に原点を通っているという解釈が成り立つことを示している。
ユークリッドの幾何学の建設時の想い、ボーヤイ・ヤーノシュの激しい挑戦の様を、 想い を 深く、いろいろ想像している。
以 上
Matrices and Division by Zero z/0 = 0
表題について、山間部を散歩している折り新鮮な感覚で、想いが湧いて来た。新しい幾何学の発見で、ボーヤイ・ヤーノシュが父に言われた 平行線の公理を証明できたら、地球の大きさ程のダイヤモンドほどの値打ちがあると言われて、敢然と証明に取り掛かった姿とその帰結である。また、ユークリッドが海岸を散歩しながら幾何学を建設していく情景が鮮やかに想い出された(Liwanovaの『新しい幾何学の発見』(のちに『ロバチェフスキーの世界』と改題)(東京図書刊行)。この件、既に声明に述べているので、まずは確認したい:
再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)
まず基本語をウイキペデアで確認して置こう:
https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9
アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。
https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%
非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。
ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。
ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。
この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。
ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。
何と ユークリッド空間で 平行線は ある意味で全て原点で交わっている という、現象が明らかにされた。
もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。
そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。
ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。
この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。
平行線の交わりを考えてみる。交わる異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。
一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。
ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。
以上
上記で、数学的に大事な観点は、ユークリッド自身そうであったが、平行線公理は真理で、証明されるべきもの、幾何学は絶対的な真理であると非ユークリッド幾何学の出現まで、考えられてきたということである。2000年を超える世界観であった事実である。そこで、平行線の公理を証明しようと多くの人が挑戦してきたが、非ユークリッド幾何学の出現まで不可能であった。実は、証明できない命題であったという全く意外な帰結であった。真に新しい、概念、世界観であった。証明できない命題の存在である。それこそ、世界観を変える、驚嘆すべき世界史上の事件であったと言える。
この事件に関してゼロ除算の発見は、全く異なる世界観を明らかにしている。ユークリッドそして、非ユークリッド幾何学の3人の発見者にとって、全く想像ができなかった、新しい事実である。平行線が 無限の先で交わっているとは ユークリッドは考えなかったと思われるが、近代では、無限の先で交わっていると考えられて来ている。― これには、アーベル、オイラー、リーマンなどの考えが存在する。このような考えは、ここ100年以上、世界の常識、定説になっている。ところがゼロ除算では、無限遠点は 数ではゼロが対応していて、平行線は代数的に原点で交わっている、すべての直線は代数的に原点を通っているという解釈が成り立つことを示している。
ユークリッドの幾何学の建設時の想い、ボーヤイ・ヤーノシュの激しい挑戦の様を、 想い を 深く、いろいろ想像している。
以 上
Matrices and Division by Zero z/0 = 0
0 件のコメント:
コメントを投稿