連続性と無限
運動変化の連続性、平たく言えば、スムーズな運動変化、途切れることのない、流れるような運動変化とはどのような変化なのか。この問いこそギリシャ以来多くの人が関心をもってきた謎であった。私たちの眼には運動変化は連続的な変化として映る。どんな対象も連続的に位置を移動しているように見える。その変化の妙は時には美的な感動さえ引き起こす。私たちの適応は運動変化が連続していることを前提にした適応としか言いようがないほどに、運動は連続的であることを生活や行動の基礎にしている。つまり、自然の変化は運動を基本にしており、その運動の基本的な特徴は連続性にある、これこそ人が経験的に獲得してきた想定である。だが、この感覚的に明らかな特徴は、非感覚的に理解しようとすると厄介な事柄となる。命題の真偽が二値的であることがほとんど自明であるのと同じように、運動の連続性は疑いえない事実と考えられてきた。
自明としか見えない運動の連続性の本質を見極めようとすれば、どのようにすればよいのか。運動変化の表象装置として感覚知覚を使わない、別の装置が考案できれば、感覚的でない仕方で運動の連続性をより冷静に、別の視点から理解できることになる。この見込みこそ、数学と物理学の関係を説明してくれる基本にあるものである。運動を感覚知覚的に表象するのではなく、数学的に表象することこそ二つの関係を築いてきたものである。運動を適確に表象する装置が幾何学であり、幾何学によって世界を非感覚的に描くということがギリシャ以来人類の採ってきた方法だった。
運動の表象装置としての幾何学は、運動を描くのに不可欠な時間や空間の表象を含んでいた。それが幾何学の解析化であり、それに伴い「無限」概念が重要な役割をもつようになった。それまで避けられてきた「無限が物理世界に存在するかどうか」といった問いに正面から立ち向かわなければならなくなる。確かに、時空の存在と無限の関係は多くの人を惹きつける問いである。
点が連続的に並んでいることが線であることを認めるには、点が無限にならばなければならず、連続性の背後に無限が横たわっていることを示している。だが、無限はギリシャ時代には忌むべき概念だった。それがアリストテレスの「可能無限」という折衷的な概念になり、カントールの「実無限」概念が登場するまで解析学を支えてきた。
連続性の解明は実数の連続性(そして実数値関数の連続性)として考察の対象となり、実数の解明は解析学の基礎として不可欠なものとなった。実数を解明する研究者の一人であったカントールは、無限概念を実無限として解明しようとした。実無限がどのような概念で、その内容は連続体仮説(continuum hypothesis)の証明によって決着がついたのだろうか。
パルメニデスによれば、実無限と可能無限の区別はなく、二つは同じ無限で、完結した無限だけが意味をもっている。だが、アリストテレスは二つの無限を区別し、実無限の存在を否定する。「数が増えていく、減っていく…」といった変化する数の並びは認識上有効でも、数学的対象として無限を考えた場合、他の確定した数学的概念と自動的に組み合すことができなくなる。その意味で可能無限は曖昧である。可能無限は外延が曖昧な、反パルメニデス的概念であり、物理世界や心理世界の変化を数学世界にもち込んだようなものである。「完結した運動」だけが意味のある運動であると考える人は、完結した実無限だけが数学的に完結した意味をもつと考えるだろう。だが、数学の直観主義者や構成主義者は変化する過程を変化し終えた結果として考えることに同意しない。確かに、変化の只中に身を置くなら、そこは排中律が成立しない、典型的な非決定論的世界となっている。
最も実数らしい性質が「連続性」であり、この性質のお陰で微積分が可能となり、それを使って自然を扱ってきた。[1]連続性を支える「限りなく近づく」ことのできる性質[2]が点と線の不思議な関係を基本にして成立している。連続する時間や空間を表現する最も適した数学的対象として、実数は数学者の関心の的となってきた。
「点が集まると線ができ、線を分割していくと点に到る」という点と線の関係が実数における無限分割可能性という語のもつ意味を独特なものにしている。自然数の集まりも無限に分割できるが、自然数をすべて集めても線をつくることはできない。では、その自然数からどのようにして実数をつくり出すことができるのか。それを示すことが集合論の研究目標だった。この目標はいまだ実現できず、実数が自然数より高い濃度をもつことはわかったが、その濃度が自然数の濃度の次の濃度か否かは今の公理的集合論においては証明できない。[3]
実無限、可能無限という区別は一見重要な区別に見える。[4]無限を扱う認識レベルではそうなのかも知れないが、存在レベルでは大きな意味をもっていない。認識レベルの話とは別に、「集合」は実数のもつ無限性を明らかにできる基本的概念である。
「要素が集まると集合ができ、集合は要素に分解できる」
「点が集まると線ができ、線を分割していくと点に到る」
上の文は比べるまでもなく、類似したことを主張している。点や線、そして実数のもつ基本性質は集合概念によって表現し直され、したがって、集合の基本性質から点や線、実数の性質が証明できることが保証されている。これが意味することは実に大きい。それは、
(1)集合論は古典的世界観を支える数学である、
ことを帰結する。と言うのも、実数を基礎付けるのが集合論であり、その実数によって表現されるのが古典的世界であるからである。特に、その時空は実数によって表現されている。古典的世界観の時空に関するアプリオリな前提は古典力学の時空に関する前提と同じであり、その前提は実数のもつ幾つかの性質そのものである。
(2)いつでも、どこでも対象とその状態が存在し、各状態の物理量の値は決まっている。
対象の性質で重要なのはその性質の内容であって、性質そのものではない。人には体重があり、「体重とはどのような性質か」という問いと「君の体重は何か」という問いは同じではない。君の体重が60kgであることが体重の具体的な内容であり、体重という性質そのものは通常は体重の定義において問題になるに過ぎない。対象の状態を定義する際には状態がどのような性質によって構成されているかが問題になるが、対象の状態の内容こそが状態を決めるのに必要となる。状態の内容は位置や速度の具体的な数値で表現される。
上の文の物理量の値を満たすように実数を使う際、実数のどのような性質を使うか考えると、時空の表現と状態の表現に使われる実数の性質は、実数そのものをそのまま使うことによって済まされてきた。というのも、実数を使えばすべてが同時に満たされ、実数の性質のうちのどれといったものではなかったからである。実数の数学的性質がいつも物理的に有意味だとは言えないが、どんな数学的性質もいつかどこかで物理的に有意味になる可能性をもっている。運動の連続性は変化がすべて連続的ではない中で、運動がもつ特徴である。運動が起こる時間、空間が連続する中で、運動が不連続になるような状況があるだろうか。古典力学は通常次のような仮定を認めている。
(3)連続する時空の中で対象が不連続に運動することは物理的に不可能である。[5]
運動する対象が不変、つまり、生成消滅しない場合、その対象の運動は不連続ではない。というのも不連続な運動が起きるとすれば、対象は消えたり、現れたりしなければならなくなるからである。無論、数学的に不連続な運動を表す不連続な関数を考えることは数学的には十分有意味なことである。だが、そのような対象は物理世界には存在しない。
古典的世界観を支える(1)、(2)、(3)の前提は日常世界にしっかり浸透している。それらを前提にすべき理由より、前提にしないといかに不自然で、非常識的な事態が生じるか考えてみる方がよいだろう。そのように考えた場合、結果があまりに不自然、非常識だという理由から、三つの前提が正当化されたと誤って考えないように注意すべきである。
運動の表現に実数を用いるということ自体が三つの前提を認めることを帰結する。「時間と空間の量子化」という表現は時間や空間を物質の原子論と同じように考えようということを意図しており、正に「時間と空間の原子論」である。すると、すぐに実数が不都合な装置であることがわかる。実数をそのまま使ったのでは原子論の主張と両立しないからである。そこで点ではなく区間で時間や空間の最小単位を考えるといった工夫が必要となってくる。区間を最小の単位にした場合、対象の運動はどのようになるのか、どのようにそれが表現できるのかという二つの異なる問題が出てくる。前者は物理学の問題であり、後者は言語、つまりは数学の問題である。
[1] 数学では常識的な連続性を完備性(completeness)と呼び、関数について連続性(continuity)という用語が使われる。
[2] 収束は「限りなく近い」点の存在によって定義され、いわゆるε-δ方式によって教えられてきた。前出の説明を参照。
[3] これが連続体仮説が公理的な集合論から独立しているということであり、ゲーデルとコーエンの結果である。
[4] アリストテレスやカントが二つの無限概念を区別し、直観主義にも大きな影響を与えたと言われているが、「無限の対象を含む集合を考えることができたら、そこから何が見えてくるか」という問いを優先したのが20世紀の大勢であり、その姿勢が集合論を生み出すことになった。そこでは「完結した無限」が集合と考えられ、「生成途上にある無限」は集合とさえみなされない。したがって、運動に関しても同じように完結した運動を対象にすることになる。
[5] 不連続は純粋に(数学的に)不連続と擬似的に(経験的に)不連続の二つに分けられそうである。単なるストップモーションと、時間、位置の断絶は異なっている。
huukyou 191日前http://huukyou.hatenablog.com/entry/2015/06/02/202727
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観
最近展開しているゼロ除算が、新しい世界観を示しているのは 大変興味深い。直線とは一体どうなっているだろうか.空間とはどのようになっているだろうか。これについて、現代人は、双方向にどこまでも どこまでも 続いている直線を想像するであろう。限りなく広がった平面や空間である。ところが 立体射影によって 平面全体を球面上に1対1に写せば、全平面は 球面から北極を除いた球面上に1対1にきちんと写るから、無限に広がる 全平面の全貌が捉えられる。ところが平面上には存在しない想像上の点 それはあらゆる方向に限りなく遠くに存在する無限遠点の導入によって、その点を球面の欠けた1点北極に対応させれば、無限遠点を含めた平面全体は 球面全体と1対1にきちんと対応する。
このような対応で 平面上の円や直線全体は 球面上では共に円に対応するという美しい対応になり、平面上の直線は 球面上では、北極(無限遠点)を通る円に写ると、直線と円の区別は 球面上では不要になる。また、平面上の平行線とは 無限遠点で 角度ゼロで交わっている(接している)と平面上の構造がよく見えて、無限遠点を含めての平面の全構造が 捉えられる。このように、考えると、直線とは、球面上では北極を通る円、平面上では無限遠点を通る直線となる。この構造は、直線を1方向にどこまでも, どこまでも進めば、無限遠点を 通って、逆方向から戻ってくるという、永劫回帰の思想をちょうど実現している。それは、球面上では、 円を繰り返し回ることを意味する。 その様は 何もかも すっかり良く見える。
これが、従来100年以上も続いた世界観で、関数y=x やW=zは 無限遠点に近づけば、それらの像も無限遠点に近づいていると考えるだろう。 関数y=x の値は正方向にどんどん行けば、どんどん大きくなると考えるだろう。
しかるに、ゼロ除算1/0=0は、それらの関数は無限遠点にいくらでも近づくと 無限遠点にいくらでも近づくが、無限遠点自身では、突然ゼロになっていることが 幾何学的にも確認された。上記、北極は 実は原点ゼロに一致しているという。
話しを簡単にするために、 関数y=x を考えよう。右に行けば、プラス無限に、負の方向左に行けば 負の無限に限りなく近づくは 従来通りである。ところが、ゼロ除算では いずれの方向でも上記無限遠点では 値ゼロをきちんと取っているという。ゼロ除算の数学では、どんどん、増加した先、突然、ゼロ、原点に戻っているという。また、円でも球面でも半径Rをどんどん大きくすると、当然、円の面積や球の体積はどんどん限りなく大きくなるが、半径が無限のとき、突然、それらはゼロになるという。それらの理由も数学ばかりではなく、幾何学的にも明確に見えている。
この数学的な事実は、我々の世界、宇宙がどんどん拡大して行くと突然、ゼロに帰するということを暗示させている。 ― これは 宇宙回帰説を意味しているようである。
これは、ユニバースの普遍的な現象、どんどん進んだ先が、元に突然戻る原理を示しているようである。
そもそも人生とは如何なるものか。― よくは分からないが、事実として、生まれて、どんどん物心がついて、人間として精神活動が活発化して、多くは本能原理によって生かされて、そして、突然元に戻ることを意味しているようである。このことを深く捉えられれば、世界がよりよく観え、悟りの境地に達する大きなヒントを得ることができるだろう。
ここでは ゼロ除算の帰結として、宇宙回帰説、ユニバースの回帰説を唱えたい。この考えでは、どんどん進めば、突然元に戻るという原理を述べている。珠算における 御破算で願いましては で 再び始めることを想起させる。これは、また、reset と同様であると考えられる。
以 上
再生核研究所声明259 (2015.12.04) 数学の生態、旬の数学 ―ゼロ除算の勧め
数学とは何だろうかと問うてきたが(No.81, May 2012(pdf 432kb) www.jams.or.jp/kaiho/kaiho-81.pdf)違う観点から、はじめに数学の生態について外観して、ゼロ除算の研究の勧めを提案したい。
純粋数学の理論は 恰も人間とは無関係に存在して、まるで神の言語のように感じられるが、しかしながら、生活している人間、関与している人間、またそれらを支えている社会が数学の発展の行くすえ、成長の生態に反映されているのは事実である。実際、最も古く、超古典のユークリッド幾何学の発展、現状を見れば、数学の生態の様を見ることができる。その幾何学は 素朴に土地を測るという、現実の要求から生まれ、知的要求で言わば社会との関わりを有しないレベルまで発展して、膨大な理論体系が作られたが、現在では研究の専門家がいない程に確立した理論とされている。研究課題としては終わっていると考えられる。多くの数学も同様な経過を辿っている様を見ることができる。多くは物理学やいろいろな現象から新しい数学が生まれた例は多いが、ここは、素朴な数学の具体例、基本的な問題から、新しい数学が生まれ、発展して、やがて、細分化、孤立化した結果に至って 衰退している様を 数学の生態として捉えることができるだろう。社会との関係が薄く、興味を抱く人が少なくなれば、その数学は衰退すると ―すなわち 誰もやらなくなり、殆ど忘れされていくことになるだろう。この意味で、多くの数学も、花の命や人の一生のように 夢多き時期、華やいだ時期、衰退して行く時期といろいろな時期があると考えるのが妥当ではないだろうか。基本的で、新規な結果がどんどん展開されるときは、その数学の発展期で、活動期にあると考えられる.他方、他との関係が付かず、興味、関心を抱く者が少なくなれば、既に衰退期にあり、研究は労あって成果は小さいと言えよう。
数学を言わば輸入に頼っている国では、価値観も定かではなく、権威ある、あるいは数学の未解決問題の解明や小さな部分の形式的な拡張や精密化に力を入れている現実がある。見るだけでうんざりしてしまう論文は 世に多いと言える:
再生核研究所声明128 (2013.8.27): 数学の危機、 末期数学について
(特に純粋数学においては、考えられるものは何でも考える自由な精神で真理の追究を行なっているから(再生核研究所声明36:恋の原理と心得)、一旦方向が、課題が定まると、どんどん先に研究が進められる。基本的な精神は 内部における新しい概念と問題の発掘、拡張、すなわち一般化と精密化、そして他の数学との関係の追求などである。それらがどんどん進むと、理解出来る者、関心を抱く者がどんどん少なくなり、世界でも数人しか興味を抱く者がいないという状況になり、そのような状況は 今や珍しくはないと言える。 ― 興味以前に分からない、理解できないが 殆どであると言える。 また、何のための結果かと問われる結果が 現代数学の大部分を占めていると言えるだろう。特に数学内部の興味本位の結果は そのような状況に追い込まれ、数学の末期的状況の典型的な形相と言えるだろう。実際、相当なブームに成っていた数学の分野が、興味や関心を失い、世界でも興味を抱く者が殆どいなくなる分野は 結構実在する。それらの様は、さまざまな古代遺跡のように見えるだろう。― 夏草や兵どもが夢の跡(なつくさや つわものどもがゆめのあと):松尾芭蕉。
もちろん、数学は、時間によらないようであるから、オイラーの公式のように、基本的で美しく、いろいろ広く関係しているような結果は、普遍 (不変) 的な価値を 有すると言える。)
どの辺の数学に興味を抱くは、個人の好みであるが、最近考えられているゼロ除算は極めて初期の段階にあり、夢多き段階にあると見られので、広く世に状況を公表して、ゼロ除算の研究を推進したい。
ゼロ除算は、西暦628年インドでゼロが記録されて以来の発見で、全く未知の新しい数学、前人未到の新世界の発見である。すなわち、ゼロで割るは 不可能であるがゆえに 考えてはいけないとされてきたところ、ゼロで割ることができるとなったのであるから、全く未知の世界を探検できる。 既に数学的には確立され、物理的、幾何学的にも実証されている。 最近、素人にも分かるような例が結構発見されてきたので、 広く 世にそのような面白い新しい現象の発見を呼びかけたい。まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、関数y = 1/x のグラフは、原点で ゼロであると述べている。すなわち、 1/0=0 である。それらは 既に 数の実体である と言える。
― 要点は、上記直角双曲線は、原点で猛烈な不連続性を有し、爆発や衝突、コマで言えば、 中心の特異性などの現象を記述していることである。複素解析学では、1/0として、無限遠点が存在して、美しい世界であるが、無限遠点は 数値としては ゼロが対応する。
現在までに発見されたゼロ除算の実現例を簡単に列挙して置こう:
万有引力の法則で、2つの質点が一致すれば、引力はゼロである;一定の角速度で回転している回転体の中心で、角速度はゼロで、中心で不連続性を有している;光の輝度は 光源でゼロであること:円の中心の鏡像は 無限遠点ではなくて、中心そのものであるという強力な不連続性;電柱の微小な左右の揺れから、真っ直ぐに立った電柱の勾配はゼロであり、左右からマイナス無限とプラス無限の傾きの一致として、傾きゼロが存在している; 代数的には ゼロ除算z/0=0を含む簡単な体の構造が明らかにされ、数体系として自然な体系である複素数体より ゼロ除算z/0=0を含むY体 の方が自然であると考えられること; 点の曲率がゼロであること、などである。
さらに、原始的なテコの原理にもゼロ除算は明確に現れ、初等幾何学にも明確に現れ、例えば、半径Rの円をどんどん大きくすると,円の面積はいくらでも大きくなるが、半径が無限になると突然、その面積はゼロになることが認識された。 Rが無限になると円は直線になり、円は壊れて半空間になるからである。 このことの明確な意味が数学的に捉えられ、一般に図形が壊れる現象をゼロ除算は表していることが分かった。これらの現象は ゼロ除算が 普遍的に存在する現象を説明するもの と考えられる。
また、ゼロ除算において 無限遠点が 数値では ゼロで表されることは 驚嘆すべきことであり、それではuniverse は一体どうなっているのかと、真智への愛の 激しい情念が湧いてくるのではないだろうか。ゼロ除算は、数学ばかりではなく、物理学や世界観や文化にも大きな影響を与える:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算の最も関与している研究は まず 第1に複素解析学への影響、複素解析学の研究ではないだろうか。 実際、ゼロ除算は、ローラン展開そのものの見方から始まり、それは佐藤の超関数や特異積分などに関係している。
第2は、 ゼロ除算の物理学への影響である。 これは、ニュートンの万有引力の法則など多くの物理法則の公式に、ゼロ除算が現れているので、それらに対する新しい結果の解釈、影響である。
第3は ゼロ除算の代数的な、あるいは作用素論的な研究である。これらも始まったばかりであり、出版が確定している論文:
S.-E. Takahasi, M. Tsukada and Y.Kobayashi, Classification of continuous fractional binary operators on the realand complex fields, Tokyo Journal of Mathematics {\bf 8}(2015), no.2 (in press).
がそれらの最先端である。
これらの分野では、誰でも先頭に立てる全く新しい研究分野と言える。
全く、新しい研究分野となると、若い人がやみくもに挑戦するのは危険だと考えるのは、 よく理解できるが、ある程度自己の研究課題が確立していて、多少の余裕がみいだせる方は、新しい世界を自分の研究課題と比較しながら、ちょっと覗いてみるかは、面白いのではないだろうか。思わぬ関係が出てくるのが、数学の研究の楽しさであると言える面は多い。アメリカ新大陸に初めて移った人たちの想い、 ピッツバーグの地域に初めて移住した人たちの想いを想像してみたい。ゼロ除算は 新しい数学である。専門家はいないから、多くの人が面白い現象を発見できる機会があると考えられる。
次も参考:
再生核研究所声明189(2014.12.233) ゼロ除算の研究の勧め
再生核研究所声明222(2015.4.8) 日本の代表的な数学として ゼロ除算の研究の推進を求める
再生核研究所声明253(2015.10.28) 私も探そう ―ゼロ除算z/0=0 の現象
以 上
追記: ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
正確に次のように公開して複素解析とゼロ除算の研究を開始した:
特異点解明の歩み100/0=0,0/0=0 関係者:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。宜しくお願い致します。 添付 物語を続けたい。敬具 齋藤三郎
2014.4.1.11:10
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6月、帰国後、気に成っていた、金子晃先生の 30年以上前に購入した超函数入門の本に 極めて面白い記述があり、佐藤超関数とゼロ除算の面白い関係が出てきた。さらに 特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられているが、面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていることが分かった。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
現在まで、添付21ページの論文原稿について 慎重に総合的に検討してきた。
そこで、問題の核心、ゼロ除算の発展の基礎は、次の論点に有るように感じられてきた:
We can find many applicable examples, for example, as a typical example in A. Kaneko (\cite{kaneko}, page 11) in the theory of hyperfunction theory: for non-integers $\lambda$, we have
\begin{equation}
x_+^{\lambda} = \left[ \frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}\right] =\frac{1}{2i \sin \pi \lambda}\{(-x + i0)^{\lambda}- (-x - i0)^{\lambda}\}
\end{equation}
where the left hand side is a Sato hyperfunction and the middle term is the representative analytic function whose meaning is given by the last term. For an integer $n$, Kaneko derived that
\begin{equation}
x_+^{n} = \left[- \frac{z^n}{2\pi i} \log (-z) \right],
\end{equation}
where $\log$ is a principal value: $ \{ - \pi < \arg z < +\pi \}$. Kaneko stated there that by taking a finite part of the Laurent expansion, the formula is derived.
Indeed, we have the expansion, for around $ n$, integer
$$
\frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}
$$
\begin{equation}
= \frac{- z^n}{2\pi i} \frac{1}{\lambda -n} - \frac{z^n}{2\pi i} \log (-z )
- \left( \frac{\log^2 (-z) z^n}{2\pi i\cdot 2!} + \frac{\pi z^n}{2i\cdot 3!}
\right)(\lambda - n) + ...
\end{equation}
(\cite{kaneko}, page 220).
By our Theorem 2, however, we can derive this result (4.3) from the Laurant expansion (4.4), immediately.
上記ローラン展開で、\lambda に n を代入したのが ちょうど n に対する佐藤の超関数になっている。それは、ゼロ除算に言う、 孤立特異点における解析関数の極における確定値である。これはゼロ除算そのものと殆ど等価であるから、ローラン展開に \lambda = n を代入した意味を、上記の佐藤超関数の理論は述べているので 上記の結果を分析すれば、ゼロ除算のある本質を捉えることができるのではないかと考えられる。
佐藤超関数は 日本で生まれた、基本的な数学で 優秀な人材を有している。また、それだけ高級、高度化しているが、このような初歩的、基本的な問題に関係がある事が明らかになってきた。そこで、佐藤超関数論の専門家の方々の研究参加が望まれ、期待される。また、関係者の助言やご意見をお願いしたい。
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として示していることである。
以 上
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269
7歳の少女が、当たり前であると言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。
1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・
無限遠点は存在するが、無限大という数は存在しない・・・・
地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。
0×0=0・・・・・・・・・だから0で割れないと考えた。
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・
1+1=2が当たり前のように
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
1÷0=0
1÷0=∞・・・・数ではない
1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
アラビア数字の伝来と洋算 - tcp-ip
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
明治5年(1872)
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
運動変化の連続性、平たく言えば、スムーズな運動変化、途切れることのない、流れるような運動変化とはどのような変化なのか。この問いこそギリシャ以来多くの人が関心をもってきた謎であった。私たちの眼には運動変化は連続的な変化として映る。どんな対象も連続的に位置を移動しているように見える。その変化の妙は時には美的な感動さえ引き起こす。私たちの適応は運動変化が連続していることを前提にした適応としか言いようがないほどに、運動は連続的であることを生活や行動の基礎にしている。つまり、自然の変化は運動を基本にしており、その運動の基本的な特徴は連続性にある、これこそ人が経験的に獲得してきた想定である。だが、この感覚的に明らかな特徴は、非感覚的に理解しようとすると厄介な事柄となる。命題の真偽が二値的であることがほとんど自明であるのと同じように、運動の連続性は疑いえない事実と考えられてきた。
自明としか見えない運動の連続性の本質を見極めようとすれば、どのようにすればよいのか。運動変化の表象装置として感覚知覚を使わない、別の装置が考案できれば、感覚的でない仕方で運動の連続性をより冷静に、別の視点から理解できることになる。この見込みこそ、数学と物理学の関係を説明してくれる基本にあるものである。運動を感覚知覚的に表象するのではなく、数学的に表象することこそ二つの関係を築いてきたものである。運動を適確に表象する装置が幾何学であり、幾何学によって世界を非感覚的に描くということがギリシャ以来人類の採ってきた方法だった。
運動の表象装置としての幾何学は、運動を描くのに不可欠な時間や空間の表象を含んでいた。それが幾何学の解析化であり、それに伴い「無限」概念が重要な役割をもつようになった。それまで避けられてきた「無限が物理世界に存在するかどうか」といった問いに正面から立ち向かわなければならなくなる。確かに、時空の存在と無限の関係は多くの人を惹きつける問いである。
点が連続的に並んでいることが線であることを認めるには、点が無限にならばなければならず、連続性の背後に無限が横たわっていることを示している。だが、無限はギリシャ時代には忌むべき概念だった。それがアリストテレスの「可能無限」という折衷的な概念になり、カントールの「実無限」概念が登場するまで解析学を支えてきた。
連続性の解明は実数の連続性(そして実数値関数の連続性)として考察の対象となり、実数の解明は解析学の基礎として不可欠なものとなった。実数を解明する研究者の一人であったカントールは、無限概念を実無限として解明しようとした。実無限がどのような概念で、その内容は連続体仮説(continuum hypothesis)の証明によって決着がついたのだろうか。
パルメニデスによれば、実無限と可能無限の区別はなく、二つは同じ無限で、完結した無限だけが意味をもっている。だが、アリストテレスは二つの無限を区別し、実無限の存在を否定する。「数が増えていく、減っていく…」といった変化する数の並びは認識上有効でも、数学的対象として無限を考えた場合、他の確定した数学的概念と自動的に組み合すことができなくなる。その意味で可能無限は曖昧である。可能無限は外延が曖昧な、反パルメニデス的概念であり、物理世界や心理世界の変化を数学世界にもち込んだようなものである。「完結した運動」だけが意味のある運動であると考える人は、完結した実無限だけが数学的に完結した意味をもつと考えるだろう。だが、数学の直観主義者や構成主義者は変化する過程を変化し終えた結果として考えることに同意しない。確かに、変化の只中に身を置くなら、そこは排中律が成立しない、典型的な非決定論的世界となっている。
最も実数らしい性質が「連続性」であり、この性質のお陰で微積分が可能となり、それを使って自然を扱ってきた。[1]連続性を支える「限りなく近づく」ことのできる性質[2]が点と線の不思議な関係を基本にして成立している。連続する時間や空間を表現する最も適した数学的対象として、実数は数学者の関心の的となってきた。
「点が集まると線ができ、線を分割していくと点に到る」という点と線の関係が実数における無限分割可能性という語のもつ意味を独特なものにしている。自然数の集まりも無限に分割できるが、自然数をすべて集めても線をつくることはできない。では、その自然数からどのようにして実数をつくり出すことができるのか。それを示すことが集合論の研究目標だった。この目標はいまだ実現できず、実数が自然数より高い濃度をもつことはわかったが、その濃度が自然数の濃度の次の濃度か否かは今の公理的集合論においては証明できない。[3]
実無限、可能無限という区別は一見重要な区別に見える。[4]無限を扱う認識レベルではそうなのかも知れないが、存在レベルでは大きな意味をもっていない。認識レベルの話とは別に、「集合」は実数のもつ無限性を明らかにできる基本的概念である。
「要素が集まると集合ができ、集合は要素に分解できる」
「点が集まると線ができ、線を分割していくと点に到る」
上の文は比べるまでもなく、類似したことを主張している。点や線、そして実数のもつ基本性質は集合概念によって表現し直され、したがって、集合の基本性質から点や線、実数の性質が証明できることが保証されている。これが意味することは実に大きい。それは、
(1)集合論は古典的世界観を支える数学である、
ことを帰結する。と言うのも、実数を基礎付けるのが集合論であり、その実数によって表現されるのが古典的世界であるからである。特に、その時空は実数によって表現されている。古典的世界観の時空に関するアプリオリな前提は古典力学の時空に関する前提と同じであり、その前提は実数のもつ幾つかの性質そのものである。
(2)いつでも、どこでも対象とその状態が存在し、各状態の物理量の値は決まっている。
対象の性質で重要なのはその性質の内容であって、性質そのものではない。人には体重があり、「体重とはどのような性質か」という問いと「君の体重は何か」という問いは同じではない。君の体重が60kgであることが体重の具体的な内容であり、体重という性質そのものは通常は体重の定義において問題になるに過ぎない。対象の状態を定義する際には状態がどのような性質によって構成されているかが問題になるが、対象の状態の内容こそが状態を決めるのに必要となる。状態の内容は位置や速度の具体的な数値で表現される。
上の文の物理量の値を満たすように実数を使う際、実数のどのような性質を使うか考えると、時空の表現と状態の表現に使われる実数の性質は、実数そのものをそのまま使うことによって済まされてきた。というのも、実数を使えばすべてが同時に満たされ、実数の性質のうちのどれといったものではなかったからである。実数の数学的性質がいつも物理的に有意味だとは言えないが、どんな数学的性質もいつかどこかで物理的に有意味になる可能性をもっている。運動の連続性は変化がすべて連続的ではない中で、運動がもつ特徴である。運動が起こる時間、空間が連続する中で、運動が不連続になるような状況があるだろうか。古典力学は通常次のような仮定を認めている。
(3)連続する時空の中で対象が不連続に運動することは物理的に不可能である。[5]
運動する対象が不変、つまり、生成消滅しない場合、その対象の運動は不連続ではない。というのも不連続な運動が起きるとすれば、対象は消えたり、現れたりしなければならなくなるからである。無論、数学的に不連続な運動を表す不連続な関数を考えることは数学的には十分有意味なことである。だが、そのような対象は物理世界には存在しない。
古典的世界観を支える(1)、(2)、(3)の前提は日常世界にしっかり浸透している。それらを前提にすべき理由より、前提にしないといかに不自然で、非常識的な事態が生じるか考えてみる方がよいだろう。そのように考えた場合、結果があまりに不自然、非常識だという理由から、三つの前提が正当化されたと誤って考えないように注意すべきである。
運動の表現に実数を用いるということ自体が三つの前提を認めることを帰結する。「時間と空間の量子化」という表現は時間や空間を物質の原子論と同じように考えようということを意図しており、正に「時間と空間の原子論」である。すると、すぐに実数が不都合な装置であることがわかる。実数をそのまま使ったのでは原子論の主張と両立しないからである。そこで点ではなく区間で時間や空間の最小単位を考えるといった工夫が必要となってくる。区間を最小の単位にした場合、対象の運動はどのようになるのか、どのようにそれが表現できるのかという二つの異なる問題が出てくる。前者は物理学の問題であり、後者は言語、つまりは数学の問題である。
[1] 数学では常識的な連続性を完備性(completeness)と呼び、関数について連続性(continuity)という用語が使われる。
[2] 収束は「限りなく近い」点の存在によって定義され、いわゆるε-δ方式によって教えられてきた。前出の説明を参照。
[3] これが連続体仮説が公理的な集合論から独立しているということであり、ゲーデルとコーエンの結果である。
[4] アリストテレスやカントが二つの無限概念を区別し、直観主義にも大きな影響を与えたと言われているが、「無限の対象を含む集合を考えることができたら、そこから何が見えてくるか」という問いを優先したのが20世紀の大勢であり、その姿勢が集合論を生み出すことになった。そこでは「完結した無限」が集合と考えられ、「生成途上にある無限」は集合とさえみなされない。したがって、運動に関しても同じように完結した運動を対象にすることになる。
[5] 不連続は純粋に(数学的に)不連続と擬似的に(経験的に)不連続の二つに分けられそうである。単なるストップモーションと、時間、位置の断絶は異なっている。
huukyou 191日前http://huukyou.hatenablog.com/entry/2015/06/02/202727
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観
最近展開しているゼロ除算が、新しい世界観を示しているのは 大変興味深い。直線とは一体どうなっているだろうか.空間とはどのようになっているだろうか。これについて、現代人は、双方向にどこまでも どこまでも 続いている直線を想像するであろう。限りなく広がった平面や空間である。ところが 立体射影によって 平面全体を球面上に1対1に写せば、全平面は 球面から北極を除いた球面上に1対1にきちんと写るから、無限に広がる 全平面の全貌が捉えられる。ところが平面上には存在しない想像上の点 それはあらゆる方向に限りなく遠くに存在する無限遠点の導入によって、その点を球面の欠けた1点北極に対応させれば、無限遠点を含めた平面全体は 球面全体と1対1にきちんと対応する。
このような対応で 平面上の円や直線全体は 球面上では共に円に対応するという美しい対応になり、平面上の直線は 球面上では、北極(無限遠点)を通る円に写ると、直線と円の区別は 球面上では不要になる。また、平面上の平行線とは 無限遠点で 角度ゼロで交わっている(接している)と平面上の構造がよく見えて、無限遠点を含めての平面の全構造が 捉えられる。このように、考えると、直線とは、球面上では北極を通る円、平面上では無限遠点を通る直線となる。この構造は、直線を1方向にどこまでも, どこまでも進めば、無限遠点を 通って、逆方向から戻ってくるという、永劫回帰の思想をちょうど実現している。それは、球面上では、 円を繰り返し回ることを意味する。 その様は 何もかも すっかり良く見える。
これが、従来100年以上も続いた世界観で、関数y=x やW=zは 無限遠点に近づけば、それらの像も無限遠点に近づいていると考えるだろう。 関数y=x の値は正方向にどんどん行けば、どんどん大きくなると考えるだろう。
しかるに、ゼロ除算1/0=0は、それらの関数は無限遠点にいくらでも近づくと 無限遠点にいくらでも近づくが、無限遠点自身では、突然ゼロになっていることが 幾何学的にも確認された。上記、北極は 実は原点ゼロに一致しているという。
話しを簡単にするために、 関数y=x を考えよう。右に行けば、プラス無限に、負の方向左に行けば 負の無限に限りなく近づくは 従来通りである。ところが、ゼロ除算では いずれの方向でも上記無限遠点では 値ゼロをきちんと取っているという。ゼロ除算の数学では、どんどん、増加した先、突然、ゼロ、原点に戻っているという。また、円でも球面でも半径Rをどんどん大きくすると、当然、円の面積や球の体積はどんどん限りなく大きくなるが、半径が無限のとき、突然、それらはゼロになるという。それらの理由も数学ばかりではなく、幾何学的にも明確に見えている。
この数学的な事実は、我々の世界、宇宙がどんどん拡大して行くと突然、ゼロに帰するということを暗示させている。 ― これは 宇宙回帰説を意味しているようである。
これは、ユニバースの普遍的な現象、どんどん進んだ先が、元に突然戻る原理を示しているようである。
そもそも人生とは如何なるものか。― よくは分からないが、事実として、生まれて、どんどん物心がついて、人間として精神活動が活発化して、多くは本能原理によって生かされて、そして、突然元に戻ることを意味しているようである。このことを深く捉えられれば、世界がよりよく観え、悟りの境地に達する大きなヒントを得ることができるだろう。
ここでは ゼロ除算の帰結として、宇宙回帰説、ユニバースの回帰説を唱えたい。この考えでは、どんどん進めば、突然元に戻るという原理を述べている。珠算における 御破算で願いましては で 再び始めることを想起させる。これは、また、reset と同様であると考えられる。
以 上
再生核研究所声明259 (2015.12.04) 数学の生態、旬の数学 ―ゼロ除算の勧め
数学とは何だろうかと問うてきたが(No.81, May 2012(pdf 432kb) www.jams.or.jp/kaiho/kaiho-81.pdf)違う観点から、はじめに数学の生態について外観して、ゼロ除算の研究の勧めを提案したい。
純粋数学の理論は 恰も人間とは無関係に存在して、まるで神の言語のように感じられるが、しかしながら、生活している人間、関与している人間、またそれらを支えている社会が数学の発展の行くすえ、成長の生態に反映されているのは事実である。実際、最も古く、超古典のユークリッド幾何学の発展、現状を見れば、数学の生態の様を見ることができる。その幾何学は 素朴に土地を測るという、現実の要求から生まれ、知的要求で言わば社会との関わりを有しないレベルまで発展して、膨大な理論体系が作られたが、現在では研究の専門家がいない程に確立した理論とされている。研究課題としては終わっていると考えられる。多くの数学も同様な経過を辿っている様を見ることができる。多くは物理学やいろいろな現象から新しい数学が生まれた例は多いが、ここは、素朴な数学の具体例、基本的な問題から、新しい数学が生まれ、発展して、やがて、細分化、孤立化した結果に至って 衰退している様を 数学の生態として捉えることができるだろう。社会との関係が薄く、興味を抱く人が少なくなれば、その数学は衰退すると ―すなわち 誰もやらなくなり、殆ど忘れされていくことになるだろう。この意味で、多くの数学も、花の命や人の一生のように 夢多き時期、華やいだ時期、衰退して行く時期といろいろな時期があると考えるのが妥当ではないだろうか。基本的で、新規な結果がどんどん展開されるときは、その数学の発展期で、活動期にあると考えられる.他方、他との関係が付かず、興味、関心を抱く者が少なくなれば、既に衰退期にあり、研究は労あって成果は小さいと言えよう。
数学を言わば輸入に頼っている国では、価値観も定かではなく、権威ある、あるいは数学の未解決問題の解明や小さな部分の形式的な拡張や精密化に力を入れている現実がある。見るだけでうんざりしてしまう論文は 世に多いと言える:
再生核研究所声明128 (2013.8.27): 数学の危機、 末期数学について
(特に純粋数学においては、考えられるものは何でも考える自由な精神で真理の追究を行なっているから(再生核研究所声明36:恋の原理と心得)、一旦方向が、課題が定まると、どんどん先に研究が進められる。基本的な精神は 内部における新しい概念と問題の発掘、拡張、すなわち一般化と精密化、そして他の数学との関係の追求などである。それらがどんどん進むと、理解出来る者、関心を抱く者がどんどん少なくなり、世界でも数人しか興味を抱く者がいないという状況になり、そのような状況は 今や珍しくはないと言える。 ― 興味以前に分からない、理解できないが 殆どであると言える。 また、何のための結果かと問われる結果が 現代数学の大部分を占めていると言えるだろう。特に数学内部の興味本位の結果は そのような状況に追い込まれ、数学の末期的状況の典型的な形相と言えるだろう。実際、相当なブームに成っていた数学の分野が、興味や関心を失い、世界でも興味を抱く者が殆どいなくなる分野は 結構実在する。それらの様は、さまざまな古代遺跡のように見えるだろう。― 夏草や兵どもが夢の跡(なつくさや つわものどもがゆめのあと):松尾芭蕉。
もちろん、数学は、時間によらないようであるから、オイラーの公式のように、基本的で美しく、いろいろ広く関係しているような結果は、普遍 (不変) 的な価値を 有すると言える。)
どの辺の数学に興味を抱くは、個人の好みであるが、最近考えられているゼロ除算は極めて初期の段階にあり、夢多き段階にあると見られので、広く世に状況を公表して、ゼロ除算の研究を推進したい。
ゼロ除算は、西暦628年インドでゼロが記録されて以来の発見で、全く未知の新しい数学、前人未到の新世界の発見である。すなわち、ゼロで割るは 不可能であるがゆえに 考えてはいけないとされてきたところ、ゼロで割ることができるとなったのであるから、全く未知の世界を探検できる。 既に数学的には確立され、物理的、幾何学的にも実証されている。 最近、素人にも分かるような例が結構発見されてきたので、 広く 世にそのような面白い新しい現象の発見を呼びかけたい。まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、関数y = 1/x のグラフは、原点で ゼロであると述べている。すなわち、 1/0=0 である。それらは 既に 数の実体である と言える。
― 要点は、上記直角双曲線は、原点で猛烈な不連続性を有し、爆発や衝突、コマで言えば、 中心の特異性などの現象を記述していることである。複素解析学では、1/0として、無限遠点が存在して、美しい世界であるが、無限遠点は 数値としては ゼロが対応する。
現在までに発見されたゼロ除算の実現例を簡単に列挙して置こう:
万有引力の法則で、2つの質点が一致すれば、引力はゼロである;一定の角速度で回転している回転体の中心で、角速度はゼロで、中心で不連続性を有している;光の輝度は 光源でゼロであること:円の中心の鏡像は 無限遠点ではなくて、中心そのものであるという強力な不連続性;電柱の微小な左右の揺れから、真っ直ぐに立った電柱の勾配はゼロであり、左右からマイナス無限とプラス無限の傾きの一致として、傾きゼロが存在している; 代数的には ゼロ除算z/0=0を含む簡単な体の構造が明らかにされ、数体系として自然な体系である複素数体より ゼロ除算z/0=0を含むY体 の方が自然であると考えられること; 点の曲率がゼロであること、などである。
さらに、原始的なテコの原理にもゼロ除算は明確に現れ、初等幾何学にも明確に現れ、例えば、半径Rの円をどんどん大きくすると,円の面積はいくらでも大きくなるが、半径が無限になると突然、その面積はゼロになることが認識された。 Rが無限になると円は直線になり、円は壊れて半空間になるからである。 このことの明確な意味が数学的に捉えられ、一般に図形が壊れる現象をゼロ除算は表していることが分かった。これらの現象は ゼロ除算が 普遍的に存在する現象を説明するもの と考えられる。
また、ゼロ除算において 無限遠点が 数値では ゼロで表されることは 驚嘆すべきことであり、それではuniverse は一体どうなっているのかと、真智への愛の 激しい情念が湧いてくるのではないだろうか。ゼロ除算は、数学ばかりではなく、物理学や世界観や文化にも大きな影響を与える:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算の最も関与している研究は まず 第1に複素解析学への影響、複素解析学の研究ではないだろうか。 実際、ゼロ除算は、ローラン展開そのものの見方から始まり、それは佐藤の超関数や特異積分などに関係している。
第2は、 ゼロ除算の物理学への影響である。 これは、ニュートンの万有引力の法則など多くの物理法則の公式に、ゼロ除算が現れているので、それらに対する新しい結果の解釈、影響である。
第3は ゼロ除算の代数的な、あるいは作用素論的な研究である。これらも始まったばかりであり、出版が確定している論文:
S.-E. Takahasi, M. Tsukada and Y.Kobayashi, Classification of continuous fractional binary operators on the realand complex fields, Tokyo Journal of Mathematics {\bf 8}(2015), no.2 (in press).
がそれらの最先端である。
これらの分野では、誰でも先頭に立てる全く新しい研究分野と言える。
全く、新しい研究分野となると、若い人がやみくもに挑戦するのは危険だと考えるのは、 よく理解できるが、ある程度自己の研究課題が確立していて、多少の余裕がみいだせる方は、新しい世界を自分の研究課題と比較しながら、ちょっと覗いてみるかは、面白いのではないだろうか。思わぬ関係が出てくるのが、数学の研究の楽しさであると言える面は多い。アメリカ新大陸に初めて移った人たちの想い、 ピッツバーグの地域に初めて移住した人たちの想いを想像してみたい。ゼロ除算は 新しい数学である。専門家はいないから、多くの人が面白い現象を発見できる機会があると考えられる。
次も参考:
再生核研究所声明189(2014.12.233) ゼロ除算の研究の勧め
再生核研究所声明222(2015.4.8) 日本の代表的な数学として ゼロ除算の研究の推進を求める
再生核研究所声明253(2015.10.28) 私も探そう ―ゼロ除算z/0=0 の現象
以 上
追記: ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
正確に次のように公開して複素解析とゼロ除算の研究を開始した:
特異点解明の歩み100/0=0,0/0=0 関係者:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。宜しくお願い致します。 添付 物語を続けたい。敬具 齋藤三郎
2014.4.1.11:10
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6月、帰国後、気に成っていた、金子晃先生の 30年以上前に購入した超函数入門の本に 極めて面白い記述があり、佐藤超関数とゼロ除算の面白い関係が出てきた。さらに 特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられているが、面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていることが分かった。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
現在まで、添付21ページの論文原稿について 慎重に総合的に検討してきた。
そこで、問題の核心、ゼロ除算の発展の基礎は、次の論点に有るように感じられてきた:
We can find many applicable examples, for example, as a typical example in A. Kaneko (\cite{kaneko}, page 11) in the theory of hyperfunction theory: for non-integers $\lambda$, we have
\begin{equation}
x_+^{\lambda} = \left[ \frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}\right] =\frac{1}{2i \sin \pi \lambda}\{(-x + i0)^{\lambda}- (-x - i0)^{\lambda}\}
\end{equation}
where the left hand side is a Sato hyperfunction and the middle term is the representative analytic function whose meaning is given by the last term. For an integer $n$, Kaneko derived that
\begin{equation}
x_+^{n} = \left[- \frac{z^n}{2\pi i} \log (-z) \right],
\end{equation}
where $\log$ is a principal value: $ \{ - \pi < \arg z < +\pi \}$. Kaneko stated there that by taking a finite part of the Laurent expansion, the formula is derived.
Indeed, we have the expansion, for around $ n$, integer
$$
\frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}
$$
\begin{equation}
= \frac{- z^n}{2\pi i} \frac{1}{\lambda -n} - \frac{z^n}{2\pi i} \log (-z )
- \left( \frac{\log^2 (-z) z^n}{2\pi i\cdot 2!} + \frac{\pi z^n}{2i\cdot 3!}
\right)(\lambda - n) + ...
\end{equation}
(\cite{kaneko}, page 220).
By our Theorem 2, however, we can derive this result (4.3) from the Laurant expansion (4.4), immediately.
上記ローラン展開で、\lambda に n を代入したのが ちょうど n に対する佐藤の超関数になっている。それは、ゼロ除算に言う、 孤立特異点における解析関数の極における確定値である。これはゼロ除算そのものと殆ど等価であるから、ローラン展開に \lambda = n を代入した意味を、上記の佐藤超関数の理論は述べているので 上記の結果を分析すれば、ゼロ除算のある本質を捉えることができるのではないかと考えられる。
佐藤超関数は 日本で生まれた、基本的な数学で 優秀な人材を有している。また、それだけ高級、高度化しているが、このような初歩的、基本的な問題に関係がある事が明らかになってきた。そこで、佐藤超関数論の専門家の方々の研究参加が望まれ、期待される。また、関係者の助言やご意見をお願いしたい。
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として示していることである。
以 上
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269
7歳の少女が、当たり前であると言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。
1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・
無限遠点は存在するが、無限大という数は存在しない・・・・
地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。
0×0=0・・・・・・・・・だから0で割れないと考えた。
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・
1+1=2が当たり前のように
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
1÷0=0
1÷0=∞・・・・数ではない
1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
アラビア数字の伝来と洋算 - tcp-ip
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
明治5年(1872)
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
AD
0 件のコメント:
コメントを投稿