2015年12月31日木曜日

General theory of relativity

NEW !
テーマ:
一般相対性理論(いっぱんそうたいせいりろん、独: Allgemeine Relativitätstheorie、英: General theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。
一般相対論(General relativity)とも言われる。ニュートン力学で記述すると誤差が大きくなる現象(光速に近い運動や、大きな重力場における運動)を正しく記述できる。
目次 [非表示]
1 概要
2 歴史
2.1 一般相対性理論が成立するまでの研究
2.2 一般相対性理論の発表後
3 物理学としての位置づけ
3.1 万有引力の法則との関係
3.2 特殊相対性理論との関係
3.3 量子力学との関係
3.3.1 曲がった時空上の場の理論(Quantum field theory in curved spacetime)
3.3.2 重力の繰り込み不可能性
4 一般相対性理論の内容
4.1 時空モデルとしてのリーマン多様体に求められる条件
4.2 測地線の方程式
4.3 リーマンテンソル、アインシュタイン・テンソル
4.4 アインシュタイン方程式とその特徴
4.5 アインシュタイン方程式の厳密解
5 一般相対性理論の応用
5.1 GPS
6 脚注
6.1 注釈
6.2 出典
7 参考文献
8 関連文献
9 関連項目
概要[編集]

エディントンによる1919年の皆既日食の写真

重力場の概念図
一般相対性原理と一般共変性原理および等価原理を理論的な柱とし、リーマン幾何学を数学的土台として構築された古典論的な重力場の理論であり、古典物理学の金字塔である[注 1]。測地線の方程式とアインシュタイン方程式(重力場の方程式)が帰結である。時間と空間を結びつけるこの理論では、アイザック・ニュートンによって万有引力として説明された現象が、もはやニュートン力学的な意味での力ではなく、時空連続体の歪みとして説明される。
一般相対性理論では、次のことが予測される。
重力レンズ効果
重力場中では光が曲がって進むこと。アーサー・エディントンは、1919年5月29日の日食で、太陽の近傍を通る星の光の曲がり方がニュートン力学で予想されるものの2倍であることを観測で確かめ、一般相対性理論が正しいことを示した。
水星の近日点の移動
ニュートン力学だけでは、水星軌道のずれ(近日点移動の大きさ)の観測値の説明が不完全だったが、一般相対性理論が解決を与え、太陽の質量による時空連続体の歪みに原因があることを示した。
重力波
時空(重力場)のゆらぎが光速で伝播する現象。間接観測されているが、現状では直接観測は困難とされる。
膨張宇宙
時空は膨張または収縮し、定常にとどまることがないこと。ビッグバン宇宙を導く。
ブラックホール
限られた空間に大きな質量が集中すると、光さえ脱出できないブラックホールが形成される。
重力による赤方偏移
強い重力場から放出される光の波長は元の波長より引き延ばされる現象。
時間の遅れ
強い重力場中で測る時間の進み(固有時間)が、弱い重力場中で測る時間の進みより遅いこと。
一般相対性理論は慣性力と重力を結び付ける等価原理のアイデアに基づいている。等価原理とは、簡単に言えば、外部を観測できない箱の中の観測者は、自らにかかる力が、箱が一様に加速されるために生じている慣性力なのか、箱の外部にある質量により生じている重力なのか、を区別することができないという主張である。
相対論によれば空間は時空連続体であり、一般相対性理論では、その時空連続体が均質でなく歪んだものになる。つまり、質量が時空間を歪ませることによって、重力が生じると考える。そうだとすれば、大質量の周囲の時空間は歪んでいるために、光は直進せず、また時間の流れも影響を受ける。これが重力レンズや時間の遅れといった現象となって観測されることになる。また質量が移動する場合、その移動にそって時空間の歪みが移動・伝播していくために重力波が生じることも予測される。
アインシュタイン方程式から得られる時空は、ブラックホールの存在や膨張宇宙モデルなど、アインシュタイン自身さえそれらの解釈を拒むほどの驚くべき描像である。しかし、ブラックホールや初期宇宙の特異点の存在も理論として内包しており、特異点の発生は一般相対性理論そのものを破綻させてしまう。将来的には量子重力理論が完成することにより、この困難は解決されるものと期待されている。
歴史[編集]
一般相対性理論が成立するまでの研究[編集]
1905年に特殊相対性理論を発表したアインシュタインは、特殊相対性理論を加速度運動を含めたものに拡張する理論の構築に取り掛かった。1907年に、アインシュタイン自身が「人生で最も幸福な考え(the happiest thought of my life)」と振り返る「重力によって生じる加速度は観測する座標系によって局所的にキャンセルすることができる」というアイディア(等価原理[1])を得る。 光の進み方と重力に関する論文を1911年に出版した後、1912年からは、重力場を時空の幾何学として取り扱う方法を模索した。このときにアインシュタインにリーマン幾何学の存在を教えたのが、数学者マルセル・グロスマンであった。ただし、このときグロスマンは、「物理学者が深入りする問題ではない」と助言したとも伝えられている。1915年-16年には、これらの考えが1組の微分方程式(アインシュタイン方程式)としてまとめられた。
この時期にアインシュタインが発表した一般相対性理論に関する論文は、以下の通り。
1911年 論文『光の伝播に対する重力の影響[注 2]』(Annalen der Physik (Germany), 35, 898-908)
1914年 論文『一般相対性理論および重力論の草案[注 3]』(ZS. f. Math. u. Phys., 62, 225-261)
1915年 論文『水星の近日点の移動に対する一般相対性理論による説明[注 4]』(S.B. Preuss. Akad. Wiss., 831-839)
1916年 論文『一般相対性理論の基礎[注 5]』(Annalen der Physik (Germany), 49, 769-822)
1916年 論文『ハミルトンの原理と一般相対性理論[注 6]』(S.B. Preuss. Akad. Wiss., 1111-1116)
一般相対性理論の発表後[編集]
アインシュタイン方程式の発表後は、その方程式を解くことが研究の課題となった。
1916年にカール・シュヴァルツシルトが、アインシュタイン方程式を球対称・真空の条件のもとに解き、今日ブラックホールと呼ばれる時空を表すシュヴァルツシルト解を発見した。アインシュタイン自身は、自ら導いた方程式から、重力波の概念を提案したり、宇宙全体に適用すると動的な宇宙が得られてしまうことから、宇宙項を新たに方程式に加えるなどの提案を行っている。
1917年 論文『一般相対性理論についての宇宙論的考察』(S.B. Preuss. Akad. Wiss., 142-152)
1918年 論文『重力波について』(S.B. Preuss. Akad. Wiss., 154-167)
1919年にアーサー・エディントンが皆既日食を利用して、一般相対性理論により予測された太陽近傍での光の曲がりを確認したことにより、理論の正しさが認められ、世間への認知が一気に広まった。
1922年には、宇宙膨張を示唆するフリードマン・ロバートソンモデルが提案されるが、アインシュタイン自身は、宇宙が定常であると信じていたので、現実的な宇宙の姿であるとは受け入れようとはしなかった。
しかし、1929年には、エドウィン・ハッブルが、遠方の銀河の赤方偏移より、宇宙が膨張していることを示し、これにより、一般相対性理論の予測する時空の描像が正しいことが判明した。後にアインシュタインは宇宙項の導入を取り下げ、「生涯最大の失敗だった(the biggest blunder in my career)」とジョージ・ガモフに語ったという。
1931年、スブラマニアン・チャンドラセカールは、白色矮星の質量に上限があることを理論的計算によって示した。今日、チャンドラセカール限界として知られる式は、万有引力定数 G、プランク定数 h、光速 c の3つの基本定数を含み、古典物理・量子物理双方の成果を集大成したものでもある。チャンドラセカールは、「星の構造と進化にとって重要な物理的過程の理論的研究」の功績でノーベル物理学賞(1983年)を受賞した。
1939年、ロバート・オッペンハイマーとゲオルグ・ヴォルコフ(George Volkoff)は、中性子星形成のメカニズムを考察する過程で、重力崩壊現象が起きることを予測した。
その後しばらく、一般相対性理論は、「数学的産物」として実質的な物理研究の主流からは外れている。 重力波は果たして物理的な実体であるのかどうかという論争や、アインシュタイン方程式の厳密解の分類方法などの研究がしばらく続くが、1960年代のパルサーの発見やブラックホール候補天体の発見、そしてロイ・カーによる回転ブラックホール解(カー解)の発見を契機に、一般相対性理論は天文学の表舞台に登場する。同時期に、スティーヴン・ホーキングとロジャー・ペンローズが特異点定理を発表し、数学的・物理的に進展を始めると共に、ジョン・ホイーラーらが、古典重力・量子重力双方に物理的な描像を次々と提出し始めた。ワームホール(1957年)やブラックホール(1967年)という名前を命名したのは、ホイーラーである。
1974年、ジョゼフ・テイラーとラッセル・ハルスは、連星パルサー PSR B1913+16 を発見した。連星の自転周期とパルスの放射周期を精密に観測することによって、重力波 により、連星系からエネルギーが徐々に運び去られていることを示し、重力波の存在を間接的に証明した。この業績により、2人は「重力研究の新しい可能性を開いた新型連星パルサーの発見」としてノーベル物理学賞(1993年)を受賞した。
現在は、重力波の直接観測を目指して、世界各地でレーザー干渉計が稼働している。観測のターゲットとしているのは、中性子星連星やブラックホール連星の合体で生じる重力波などで、波形の予測のための理論や数値シミュレーションが研究の重要なテーマになっている。
また、宇宙論研究では、ビッグバン宇宙モデル(1947年)が有力とされているが、さらにその初期宇宙の膨張則を修正したインフレーション宇宙モデル(1981年)も正しいことが、2006年のWMAP衛星による宇宙背景輻射の観測により決定的になったと考える人も多い。最近は、高次元宇宙モデルが脚光を浴びているが、これらの宇宙モデルは、いずれも一般相対性理論を基礎にして議論される。
アインシュタイン以後、一般相対性理論以外の重力理論も、数多く提案されているが、現在までにほとんどが観測的に棄却されている。実質的に対抗馬となるのは、カール・ブランスとロバート・H・ディッケによるブランス・ディッケ重力理論であるが、現在の観測では、ブランス・ディッケ理論のパラメーターは、ほとんど一般相対性理論に近づけなくてはならず、両者を区別することが難しいほどである。量子論と一般相対論の統一という物理学の試みは未だ進行中であるものの、一般相対性理論を積極的に否定する観測事実・実験事実は一つもない。他に提案されたどの重力理論よりも一般相対性理論は単純な形をしていることから、重力は一般相対性理論で記述される、と考えるのが現代の物理学である。
物理学としての位置づけ[編集]
万有引力の法則との関係[編集]
アインシュタイン方程式は微分方程式として与えられているため局所的な理論ではあるが、ちょうど電磁気学における局所的なマクスウェル方程式から大域的なクーロンの法則を導くことができるように、アインシュタイン方程式は静的なニュートンの万有引力の法則を包含している。万有引力の法則との主な違いは次の3点である。
重力は瞬時に伝わるのではなく光と同じ速さで伝わる。
重力から重力が発生する(非線形相互作用)。
質量を持つ物体の加速運動により重力波が放射される。
ここで、3.は荷電粒子が加速運動することにより電磁波が放射されることと類似している。これは、万有引力の法則やクーロンの法則に、運動する対象の自己の重力や電荷の効果を取り入れていることに対応している。
特殊相対性理論との関係[編集]
特殊相対性理論が、“加速している場合や重力が加わった場合を含まない特殊な状態”における時空の性質を述べた法則であるのに対して、一般相対性理論は、“加速している場合や重力が加わった場合を含めた一般的な状態”における時空の性質を述べた法則であり、等速直線運動する慣性系のみしか扱えなかった特殊相対性理論を、加速度系も扱えるように拡張した理論であると言える。
対称性の視点からは、まず、特殊相対性理論は系のローレンツ変換に対する対称性により特徴づけられ、非相対論的極限によりニュートン力学の有するガリレイ変換が導かれる。一方、一般相対性理論は一般座標変換 (diffeomorphism) に対する対称性により特徴づけられるアインシュタイン方程式を基礎方程式とする理論である。アインシュタイン方程式の有する一般座標変換に対する共変性は重力を小さくする極限のもとでローレンツ変換に対する共変性に帰し、一般相対性理論は特殊相対性理論を包含する。当然、古典力学も包含している。
量子力学との関係[編集]
量子論は一般相対性理論と同様に物理学の基本的な理論の一つであると考えられている。しかし、一般相対性理論と量子論を整合させた理論(量子重力理論)はいまだに完成していない。現在、人類の知っているあらゆる物理法則は全て場の量子論と一般相対性理論という二つの理論から導くことができる。そのため、その二つを導くことのできる量子重力理論は万物の理論とも呼ばれている。
基本的に一般相対性理論は宇宙・銀河などマクロ(高重力)の説明に使われる理論であり、量子力学はクォークなどのミクロの説明に使われる理論である。しかしブラックホールやビッグバンなどの高重力かつミクロの状態を説明するためにはこの両者を併用する必要があるのだが、相対論と量子論を併用しようとすると両者の間に深刻な対立が生じ、現在の理論では両者を並立させることが出来ない。
この問題を解決するために各国の物理学者が知恵を絞っているが決定的な理論は出てきていない。現在、有力な候補として見られているものに超弦理論がある。
曲がった時空上の場の理論(Quantum field theory in curved spacetime)[編集]
一般に場の量子論においては平坦なミンコフスキー時空における粒子を扱うが、重力の効果を近似的(半古典的)に背景時空(曲がった時空)として導入することにより場の量子論に曲がった時空の効果を近似的に取り入れたものである。
重力子の影響を背景時空として近似しているため、強い重力場のもとでは時空を完全に量子化したような量子重力理論に修正されるべきである。欠点としては、時空が静的なものであるため完全には相対論的ではない。
ホーキング放射はこの理論のもとで予測された。
重力の繰り込み不可能性[編集]
詳細は「量子重力理論」を参照
一般相対性理論の内容[編集]
一般相対性理論は、次の仮定を出発点にする。
一般相対性原理
物理学の法則は、任意の仕方で運動している座標系に関していつも成立する[2]
一般共変性の仮定
自然の一般法則[注 7]は、すべての座標系に対して成り立つ、すなわち任意の座標系に対して(一般)共変な方程式で表されなくてはならない[3]。
局所座標系における特殊相対性理論の成立仮定
無限に小さな4次元領域(4次元の擬リーマン多様体のある点における局所座標系または接空間)に対しては、座標を適当に選べば、特殊の意味での相対性理論が原則として成り立つ[注 8]。時空のある点における基本計量テンソル gi j は、その座標系に関する重力場を記述する[5]。基本計量テンソルの行列式 g は常に有限の負の値を持つ[6]。
測地線の仮定
自由質点運動は測地線である
一般相対性理論成立の歴史上、等価原理 (equivalence principle) はスタートポイントとして考えられたが、数学的に重要であるのは、一般相対性原理(一般共変性の仮定と局所座標系における特殊相対性理論の成立仮定)である。
時空モデルとしてのリーマン多様体に求められる条件[編集]
一般相対性理論においては、重力のある空間を光が通過するとき光は曲がる(光のとる経路が伸びる)ことから、時空は、重力場を基本計量テンソルとする4次元のリーマン多様体として扱われる[注 9]。可微分多様体 M がリーマン多様体であるとは、M 上の各点に基本計量テンソル gij(x) が与えられているものを言う。なお、局所座標系 \left(x^0,~x^1,~x^2,~x^3\right) の四つの座標の内、x0 は適当な測定単位で測られた時間座標、x1, x2, x3 は空間座標とする。すなわち、x0 = ct, x1 = x, x2 = y, x3 = z であるとする。さらに、リーマン多様体上に定義されるテンソル概念に対して、上下に現れる同じ添字については常に和を取るというアインシュタインの縮約記法を用いる。
一般共変性の仮定
リーマン多様体を導入することで、一般共変性の仮定は、
ある自然の一般法則がある座標系で一つのテンソルの成分がすべてゼロになる形で書き表すことができるとき、すなわち、

(テンソルの成分) = 0
とできるとき、その法則は一般共変性を持つ

というように、リーマン多様体上で定義されるテンソル概念の性質として定式化できるようになる。
局所座標系における特殊相対性理論の成立仮定
リーマン幾何学によれば、リーマン多様体上の無限に近い2点間の距離 ds は
ds^2=g_{i j}dx^idx^j
の平方で与えられる。この ds を4次元空間の無限に近い点に属する線素(line element)の大きさと呼ぶ[7]が、これは、特殊相対性理論が成り立つような座標系においては、ミンコフスキーが指摘した4次元空間における不変量
ds^2=c^2dt^2-dx^2-dy^2-dz^2
一致するものでなくてはならない。すなわち、適当な座標変換により、計量テンソル gij は、
g_{tt}=1,~g_{xx}=g_{yy}=g_{zz}=-1[注 10]
行列形式で描けば、
\begin{pmatrix}1&0&0&0\\
0&-1&0&0\\
0&0&-1&0\\
0&0&0&-1\\\end{pmatrix}
となることが要請される。これはより一般的な表現として、有限で常に負の値をもつ基本計量テンソルの行列式 g=\operatorname{det}\left(g_{ij}\right) に対する次の条件
\sqrt{-g}=1
という形で条件として求められる。
測地線の方程式[編集]
擬リーマン空間における測地線 (geodesic) は、通常の計量空間における定義と同様に、2点間の長さを最小にする曲線として定義される。曲線の長さは、
l(\gamma)=\int_\gamma\sqrt{\pm g_{\mu\nu}dx^\mu dx^\nu}=\int_\gamma\sqrt{\pm g_{\mu\nu}\frac{dx^\mu}{dt}\frac{dx^\nu}{dt}}\,dt
で与えられる。ここでの積分は、曲線 γ(t) に沿うものとする。ルート内の符号の+は空間的な曲線に対して、負の符号は時間的な曲線に対して適用し、いずれの場合も長さが実数になるようにする。
この長さの極値をもたらす条件を導出すると、測地線の方程式が得られる。局所座標で表現すると、方程式は、
\frac{d^2x^\mu}{dt^2}+\Gamma^{\mu}_{~\nu\rho}\frac{dx^\nu}{dt}\frac{dx^\rho}{dt}=0
となる。ここで、xμ(t) は、曲線 γ(t) の座標であり、\Gamma^{\mu}_{~\nu\rho} は先に登場したクリストッフェル記号である。座標の常微分方程式として得られるこの式は、初期値と初速度を与えれば解を一意に決定する。この式は、曲がった時空における光・粒子の運動方程式である。
リーマンテンソル、アインシュタイン・テンソル[編集]
時空の曲率は、レヴィ・チビタ接続 ∇ が定義するリーマン曲率テンソル (Riemann tensor) {R^\rho}_{\sigma\mu\nu} で表現される。局所座標表現では、次のように書ける。
{R^\rho}_{\sigma\mu\nu}=\frac{\partial}{\partial x^\mu}\Gamma^\rho{}_{\nu\sigma}-\frac{\partial}{\partial x^\nu}\Gamma^\rho{}_{\mu\sigma}+\Gamma^\rho{}_{\mu\lambda}\Gamma^\lambda{}_{\nu\sigma}-\Gamma^\rho {}_{\nu\lambda}\Gamma^\lambda {}_{\mu\sigma}
物理的には、このリーマン曲率テンソルから、2成分を縮約したリッチテンソル (Ricci tensor) Rμν と、さらに添字を縮約したリッチスカラー曲率 (Ricci scalar) R
R_{\mu\nu}={R^\rho}_{\mu\rho\nu}
R_{}^{}=g^{\mu\nu}R_{\mu\nu}
を考えればよく、さらにその組み合わせである、
G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}
が物質分布で定まることをアインシュタインが見いだした。この最後の組み合わせ Gμν をアインシュタイン・テンソル (Einstein tensor)と呼ぶ。
アインシュタイン方程式とその特徴[編集]
一般相対性理論の基本方程式は、
G_{\mu\nu}+\Lambda g_{\mu\nu}=\kappa T_{\mu\nu}
と表され、アインシュタイン方程式と呼ばれる。ここで Gμν はアインシュタインテンソル、gμν は計量テンソル、Λ は宇宙項、Tμν はエネルギー・運動量テンソルである。非相対論的極限でニュートンの重力理論に収束することから、右辺の比例係数 κ (アインシュタインの定数)は、
\kappa=\frac{8\pi G}{c^4}
となる。G は万有引力定数、 c は光速である。4次元空間を考えれば、テンソルは対称なので、アインシュタイン方程式は、10本の方程式からなる。
アインシュタイン方程式の左辺は時空の曲率を表し、右辺は物質分布を表す。右辺の物質分布の項により時空が曲率を持ち、その曲率の影響で次の瞬間の物質分布が定まる、という構造である。真空の時空であれば、右辺をゼロとすればよい。例えば、重力以外の力を考えないと、次のようになる。
右辺のエネルギー運動量テンソルが増加の場合(アインシュタインの特殊相対論によるとエネルギーと質量は等価であるから、エネルギー運動量テンソルの増加は質量の増加を意味する)、左辺も増加しなければならない。これは時空の曲率が増加することを意味する。アインシュタインの解釈によると重力とは時空の湾曲によるものであったから、曲率の増加は重力の増大を表す。右辺のエネルギー運動量テンソルの増大は質量が増大する事を表し、この方程式によると、それは左辺の時空の曲率、つまり重力がさらに増大することを意味する。
すなわち、重力は非線形で、重力自身は自己増大してゆく。通常の恒星のモデルでは、核融合による、生じる光(電磁波)の輻射圧とガスによる圧力が、重力と釣り合うように恒星の半径が決まる。星が燃え尽きて支える力がなくなると、重力崩壊し、電子の縮退圧で支えられる白色矮星 か、中性子の縮退圧で支えられる中性子星、あるいは、ブラックホールになることが予測される。
アインシュタイン方程式の数学的な特徴は、次のような点にある。
座標変換に対し、共変的であるので、「時間座標1+空間座標3」のみではなく、「光の進行方向2+空間座標2」といった分解表現も可能である。
非線形の2階の偏微分方程式(楕円型偏微分方程式および双曲型偏微分方程式)である。
時空構造を論じていながら、時空全体の大域的構造やトポロジーを仮定しない。
得られる解には、特異点が存在する。(特異点定理)
アインシュタイン方程式の厳密解[編集]
アインシュタイン方程式自身に何ら近似することなく得られる解析解のことを厳密解という。 良く知られている厳密解に、次のものがある。
シュヴァルツシルト解
カール・シュヴァルツシルトが1916年に発表した解。真空で球対称を仮定した解で、ブラックホールを表す最も単純な解。
カー解
ロイ・カーが1962年発表した解。真空で軸対称時空を仮定した解で、回転するブラックホールを表す最も単純な解。
ドジッター解
ウィレム・ド・ジッターが1917年に発表した解。真空で宇宙項がある場合の膨張宇宙解。ド・ジッター宇宙を表す。
フリードマン・ロバートソン・ウォーカー解
アレクサンドル・フリードマン、ハワード・ロバートソン、アーサー・ウォーカーが1922年に発表した解。時空の球対称性を仮定し、物質分布を一様等方な流体近似した解で、ビッグバン膨張宇宙を表す解。
ゲーデル解
クルト・ゲーデルが1949年に発表した解。物質分布を規定するエネルギー・運動量テンソルを、回転する一様なダスト粒子として仮定し、ゼロでない宇宙項を仮定した解で、ゲーデルの回転宇宙を表す解。
現在でも、新しい解(解析解)を発見すれば、発見者の名前がつく。ただし、同じ物理的な時空であっても、異なる座標表現を用いて、異なる解のように表現されることがあるので、注意することが必要である。
一般相対性理論の応用[編集]
GPS[編集]
自動車などの位置をリアルタイムに測定表示するカーナビゲーションシステムはグローバル・ポジショニング・システム (GPS) を利用しており、GPS衛星に搭載された原子時計に基づき生成される航法信号に依存している。
GPS衛星からの信号を受信する装置では、さまざまな要因による補正を行うが、GPS衛星の時計との同期に関するものとして、地表に対して高速で運動するGPS衛星の、特殊相対論効果による地表からみた時間の遅れ、および地球の重力場による地上の時間の遅れ、言い換えれば一般相対論効果による衛星の時計の進みが含まれる[注 11]。
GPS衛星の軌道速度は秒速約4キロメートルと高速であるため、特殊相対論によって時間の進み方が遅くなる。一方、GPS衛星の高度は約2万キロメートルで、地球の重力場の影響が小さいことから、一般相対論によって地上よりも時間の進み方が速くなる。このように特殊相対論と一般相対論で互いに逆の効果をもたらすことになる。この相対論的補正をせずに1日放置すると、位置情報が約11キロメートルもずれてしまうほどの時刻差になることから、相対論的補正はGPSシステムの運用に不可欠である[8]。https://ja.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%9B%B8%E5%AF%BE%E6%80%A7%E7%90%86%E8%AB%96

再生核研究所声明 264 (2015.12.23):  永遠とは何か ― 永遠から

現代人は 空間とは 座標軸で表される数の組の集合 で表させるものと発想しているだろう。 基礎である直線は 実数を直線上に並べたもの、逆に直線とは 実は 実数全体の表現と考えられる。 すなわち、直線とは 基準点である原点ゼロから、正方向と負方向に正の実数と負の実数が大小関係で順序づけられ無限に双方向に伸びていると考えられる。
そこで、永遠とは 直線に時間を対応させ、限りなく正方向に進んだ先のことを 想像している。どこまでも どこまでも 先に行けばどうなるだろうか。直線上でも、平面上でも である。 砂漠の伝統を有する欧米文化の背景、キリスト教などの背後には、 永遠とは限りなく 果てしなく先にあると発想しているという。 どこまでも、どこまでも きりのない世界である。 ユークリッド幾何学が そのような空間を考えていることは確かである。
ところが四季に恵まれたアジアの民は、限りなく広がる世界に、不安や淋しさを直感して、 正の先と、負の先が一致していて、直線は円で どこまでも どこまでも行くと反対方向から、現在に至り、永遠は繰り返しであると、四季の繰り返し、天空の繰り返し、円運動のように発想して 仄かな安心感を覚えているという。永劫回帰、輪廻の思想を深く懐いている。実に面白いことには 美しい複素解析学では、立体射影の考えによって、直線を球面上の円と表現し、無限遠点の導入によって、 これらの思想を 数学的に厳格に実現させ、全ユークリッド平面の全貌を捉え、無限の彼方さえ捉えることが出来た。 その時 永遠を 確かに捉え、掴むことさえ出来たと言える。立体射影による球面上の北極に 確かに存在すると言える。素晴しい、数学を手に入れていた。この美しい数学は 100年以上もリーマン球面として、複素解析学の基本となってきている。
ところが2014.2.2偶然に発見されたゼロ除算の結果は、この無限遠点が 実は原点に一致していた という衝撃的な事実を述べていた。 永遠、無限の彼方と想像していたら、それが 実は原点に戻っていたという事実である。 それが我々の数学であり、ユークリッド空間の実相である。幾何学の性質や物理的な法則をきちんと説明している、我々の世界の数学である。
それで、永遠や無限遠点、我々の空間の 十分先の考え方、発想を考える必要がある。
無限の先が原点に一致している事実、それを如何に理解すべきであろうか。
それについて、 次のように解説してきた:

再生核研究所声明232(2015.5.26)無限大とは何か、無限遠点とは何か。― 驚嘆すべきゼロ除算の結果
再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観

新しい世界観は 始まりから始まり 最後には 突然戻るということを述べている。 しからば、始めとは何で 終りとは何だろうか。 これについて、 始めも終わりも、質的な変化であると定義できるのではないだろうか。 簡単な数学で万物、universe の現象を説明するのは難しい状況は確かにあるだろう.しかし、ゼロ除算の思想は、新羅万象が絶えず変化して 繰り返している様を表現しているように感じられる。
大事な人生の視点は 今日は 明日のためや遠い未来のためにあるのではなく、 現在、現在における在るべき適切な在りようが大事だと言っているようである。もちろん、現在は、未来と過去に関係する存在であり、それらは関係付けられ、繋がっているが 焦点はもちろん、 現在にあるということである。
ビッグバンの宇宙論は 適切に理解され、始めとは 大きな変化で 現状の元が始まり、
やがて突然、元に戻って 終わることを暗示しているようである。人生とは 要するに 内なる自分と環境に調和するように在れ と ゼロ除算は言っているようである。

ゼロ除算は 仏教の偉大なる思想 を暗示させているように感じられる。

以 上

再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観
最近展開しているゼロ除算が、新しい世界観を示しているのは 大変興味深い。直線とは一体どうなっているだろうか.空間とはどのようになっているだろうか。これについて、現代人は、双方向にどこまでも どこまでも 続いている直線を想像するであろう。限りなく広がった平面や空間である。ところが 立体射影によって 平面全体を球面上に1対1に写せば、全平面は 球面から北極を除いた球面上に1対1にきちんと写るから、無限に広がる 全平面の全貌が捉えられる。ところが平面上には存在しない想像上の点 それはあらゆる方向に限りなく遠くに存在する無限遠点の導入によって、その点を球面の欠けた1点北極に対応させれば、無限遠点を含めた平面全体は 球面全体と1対1にきちんと対応する。
このような対応で 平面上の円や直線全体は 球面上では共に円に対応するという美しい対応になり、平面上の直線は 球面上では、北極(無限遠点)を通る円に写ると、直線と円の区別は 球面上では不要になる。また、平面上の平行線とは 無限遠点で 角度ゼロで交わっている(接している)と平面上の構造がよく見えて、無限遠点を含めての平面の全構造が 捉えられる。このように、考えると、直線とは、球面上では北極を通る円、平面上では無限遠点を通る直線となる。この構造は、直線を1方向にどこまでも, どこまでも進めば、無限遠点を 通って、逆方向から戻ってくるという、永劫回帰の思想をちょうど実現している。それは、球面上では、 円を繰り返し回ることを意味する。 その様は 何もかも すっかり良く見える。
これが、従来100年以上も続いた世界観で、関数y=x やW=zは 無限遠点に近づけば、それらの像も無限遠点に近づいていると考えるだろう。 関数y=x の値は正方向にどんどん行けば、どんどん大きくなると考えるだろう。
しかるに、ゼロ除算1/0=0は、それらの関数は無限遠点にいくらでも近づくと 無限遠点にいくらでも近づくが、無限遠点自身では、突然ゼロになっていることが 幾何学的にも確認された。上記、北極は 実は原点ゼロに一致しているという。
話しを簡単にするために、 関数y=x を考えよう。右に行けば、プラス無限に、負の方向左に行けば 負の無限に限りなく近づくは 従来通りである。ところが、ゼロ除算では いずれの方向でも上記無限遠点では 値ゼロをきちんと取っているという。ゼロ除算の数学では、どんどん、増加した先、突然、ゼロ、原点に戻っているという。また、円でも球面でも半径Rをどんどん大きくすると、当然、円の面積や球の体積はどんどん限りなく大きくなるが、半径が無限のとき、突然、それらはゼロになるという。それらの理由も数学ばかりではなく、幾何学的にも明確に見えている。
この数学的な事実は、我々の世界、宇宙がどんどん拡大して行くと突然、ゼロに帰するということを暗示させている。 ― これは 宇宙回帰説を意味しているようである。
これは、ユニバースの普遍的な現象、どんどん進んだ先が、元に突然戻る原理を示しているようである。
そもそも人生とは如何なるものか。― よくは分からないが、事実として、生まれて、どんどん物心がついて、人間として精神活動が活発化して、多くは本能原理によって生かされて、そして、突然元に戻ることを意味しているようである。このことを深く捉えられれば、世界がよりよく観え、悟りの境地に達する大きなヒントを得ることができるだろう。

ここでは ゼロ除算の帰結として、宇宙回帰説、ユニバースの回帰説を唱えたい。この考えでは、どんどん進めば、突然元に戻るという原理を述べている。珠算における 御破算で願いましては で 再び始めることを想起させる。これは、また、reset と同様であると考えられる。

以 上


Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/

割り算のできる人には、どんなことも難しくない

世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。

ベーダ・ヴェネラビリス

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年

再生核研究所声明259 (2015.12.04) 数学の生態、旬の数学 ―ゼロ除算の勧め

数学とは何だろうかと問うてきたが(No.81, May 2012(pdf 432kb) www.jams.or.jp/kaiho/kaiho-81.pdf)違う観点から、はじめに数学の生態について外観して、ゼロ除算の研究の勧めを提案したい。

純粋数学の理論は 恰も人間とは無関係に存在して、まるで神の言語のように感じられるが、しかしながら、生活している人間、関与している人間、またそれらを支えている社会が数学の発展の行くすえ、成長の生態に反映されているのは事実である。実際、最も古く、超古典のユークリッド幾何学の発展、現状を見れば、数学の生態の様を見ることができる。その幾何学は 素朴に土地を測るという、現実の要求から生まれ、知的要求で言わば社会との関わりを有しないレベルまで発展して、膨大な理論体系が作られたが、現在では研究の専門家がいない程に確立した理論とされている。研究課題としては終わっていると考えられる。多くの数学も同様な経過を辿っている様を見ることができる。多くは物理学やいろいろな現象から新しい数学が生まれた例は多いが、ここは、素朴な数学の具体例、基本的な問題から、新しい数学が生まれ、発展して、やがて、細分化、孤立化した結果に至って 衰退している様を 数学の生態として捉えることができるだろう。社会との関係が薄く、興味を抱く人が少なくなれば、その数学は衰退すると ―すなわち 誰もやらなくなり、殆ど忘れされていくことになるだろう。この意味で、多くの数学も、花の命や人の一生のように 夢多き時期、華やいだ時期、衰退して行く時期といろいろな時期があると考えるのが妥当ではないだろうか。基本的で、新規な結果がどんどん展開されるときは、その数学の発展期で、活動期にあると考えられる.他方、他との関係が付かず、興味、関心を抱く者が少なくなれば、既に衰退期にあり、研究は労あって成果は小さいと言えよう。
数学を言わば輸入に頼っている国では、価値観も定かではなく、権威ある、あるいは数学の未解決問題の解明や小さな部分の形式的な拡張や精密化に力を入れている現実がある。見るだけでうんざりしてしまう論文は 世に多いと言える:

再生核研究所声明128 (2013.8.27):  数学の危機、 末期数学について
(特に純粋数学においては、考えられるものは何でも考える自由な精神で真理の追究を行なっているから(再生核研究所声明36:恋の原理と心得)、一旦方向が、課題が定まると、どんどん先に研究が進められる。基本的な精神は 内部における新しい概念と問題の発掘、拡張、すなわち一般化と精密化、そして他の数学との関係の追求などである。それらがどんどん進むと、理解出来る者、関心を抱く者がどんどん少なくなり、世界でも数人しか興味を抱く者がいないという状況になり、そのような状況は 今や珍しくはないと言える。 ― 興味以前に分からない、理解できないが 殆どであると言える。 また、何のための結果かと問われる結果が 現代数学の大部分を占めていると言えるだろう。特に数学内部の興味本位の結果は そのような状況に追い込まれ、数学の末期的状況の典型的な形相と言えるだろう。実際、相当なブームに成っていた数学の分野が、興味や関心を失い、世界でも興味を抱く者が殆どいなくなる分野は 結構実在する。それらの様は、さまざまな古代遺跡のように見えるだろう。― 夏草や兵どもが夢の跡(なつくさや つわものどもがゆめのあと):松尾芭蕉。
もちろん、数学は、時間によらないようであるから、オイラーの公式のように、基本的で美しく、いろいろ広く関係しているような結果は、普遍 (不変) 的な価値を 有すると言える。)

どの辺の数学に興味を抱くは、個人の好みであるが、最近考えられているゼロ除算は極めて初期の段階にあり、夢多き段階にあると見られので、広く世に状況を公表して、ゼロ除算の研究を推進したい。
 
ゼロ除算は、西暦628年インドでゼロが記録されて以来の発見で、全く未知の新しい数学、前人未到の新世界の発見である。すなわち、ゼロで割るは 不可能であるがゆえに 考えてはいけないとされてきたところ、ゼロで割ることができるとなったのであるから、全く未知の世界を探検できる。 既に数学的には確立され、物理的、幾何学的にも実証されている。 最近、素人にも分かるような例が結構発見されてきたので、 広く 世にそのような面白い新しい現象の発見を呼びかけたい。まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、関数y = 1/x のグラフは、原点で ゼロであると述べている。すなわち、 1/0=0 である。それらは 既に 数の実体である と言える。
― 要点は、上記直角双曲線は、原点で猛烈な不連続性を有し、爆発や衝突、コマで言えば、 中心の特異性などの現象を記述していることである。複素解析学では、1/0として、無限遠点が存在して、美しい世界であるが、無限遠点は 数値としては ゼロが対応する。
現在までに発見されたゼロ除算の実現例を簡単に列挙して置こう:
万有引力の法則で、2つの質点が一致すれば、引力はゼロである;一定の角速度で回転している回転体の中心で、角速度はゼロで、中心で不連続性を有している;光の輝度は 光源でゼロであること:円の中心の鏡像は 無限遠点ではなくて、中心そのものであるという強力な不連続性;電柱の微小な左右の揺れから、真っ直ぐに立った電柱の勾配はゼロであり、左右からマイナス無限とプラス無限の傾きの一致として、傾きゼロが存在している; 代数的には ゼロ除算z/0=0を含む簡単な体の構造が明らかにされ、数体系として自然な体系である複素数体より ゼロ除算z/0=0を含むY体 の方が自然であると考えられること; 点の曲率がゼロであること、などである。
さらに、原始的なテコの原理にもゼロ除算は明確に現れ、初等幾何学にも明確に現れ、例えば、半径Rの円をどんどん大きくすると,円の面積はいくらでも大きくなるが、半径が無限になると突然、その面積はゼロになることが認識された。 Rが無限になると円は直線になり、円は壊れて半空間になるからである。 このことの明確な意味が数学的に捉えられ、一般に図形が壊れる現象をゼロ除算は表していることが分かった。これらの現象は ゼロ除算が 普遍的に存在する現象を説明するもの と考えられる。
また、ゼロ除算において 無限遠点が 数値では ゼロで表されることは 驚嘆すべきことであり、それではuniverse は一体どうなっているのかと、真智への愛の 激しい情念が湧いてくるのではないだろうか。ゼロ除算は、数学ばかりではなく、物理学や世界観や文化にも大きな影響を与える:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界

ゼロ除算の最も関与している研究は まず 第1に複素解析学への影響、複素解析学の研究ではないだろうか。 実際、ゼロ除算は、ローラン展開そのものの見方から始まり、それは佐藤の超関数や特異積分などに関係している。
第2は、 ゼロ除算の物理学への影響である。 これは、ニュートンの万有引力の法則など多くの物理法則の公式に、ゼロ除算が現れているので、それらに対する新しい結果の解釈、影響である。
第3は ゼロ除算の代数的な、あるいは作用素論的な研究である。これらも始まったばかりであり、出版が確定している論文:

S.-E. Takahasi, M. Tsukada and Y.Kobayashi, Classification of continuous fractional binary operators on the realand complex fields, Tokyo Journal of Mathematics {\bf 8}(2015), no.2 (in press).
がそれらの最先端である。

これらの分野では、誰でも先頭に立てる全く新しい研究分野と言える。
全く、新しい研究分野となると、若い人がやみくもに挑戦するのは危険だと考えるのは、 よく理解できるが、ある程度自己の研究課題が確立していて、多少の余裕がみいだせる方は、新しい世界を自分の研究課題と比較しながら、ちょっと覗いてみるかは、面白いのではないだろうか。思わぬ関係が出てくるのが、数学の研究の楽しさであると言える面は多い。アメリカ新大陸に初めて移った人たちの想い、 ピッツバーグの地域に初めて移住した人たちの想いを想像してみたい。ゼロ除算は 新しい数学である。専門家はいないから、多くの人が面白い現象を発見できる機会があると考えられる。

次も参考:

再生核研究所声明189(2014.12.233) ゼロ除算の研究の勧め
再生核研究所声明222(2015.4.8) 日本の代表的な数学として  ゼロ除算の研究の推進を求める
再生核研究所声明253(2015.10.28) 私も探そう ―ゼロ除算z/0=0 の現象

以 上

追記: ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/










0 件のコメント:

コメントを投稿