2015年12月31日木曜日

ゼロ除算(ゼロじょざん、division by zero)

NEW !
テーマ:
ゼロ除算(ゼロじょざん、division by zero)は、0 で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定にまったく依存している話である。少なくとも通常の実数の体系とその算術においては、意味のある式ではない。
コンピュータなど計算機においても、ゼロ除算に対するふるまいは様々である。たとえば浮動小数点数の扱いに関する標準であるIEEE 754では、数とは異なる無限大を表現するものが結果となる。他には、例外が起きてプログラムの中断を引き起こすかもしれないし、例えばナイーブに取尽し法を実行しようとしたなら無限ループに陥るか、なんらかの最大値のようなものが結果となるかもしれない。
計算尺では、対数尺には0に相当する位置が存在しない(無限の彼方である)ため不可能である。
目次 [非表示]
1 算数的解釈
2 初期の試み
3 代数学的解釈
3.1 ゼロ除算に基づく誤謬
4 解析学的解釈
4.1 ゼロ除算と極限
4.2 リーマン球面
5 コンピュータにおけるゼロ除算
6 ポップカルチャー
7 脚注
8 参考文献
9 関連項目
10 外部リンク
算数的解釈[編集]
算数レベルでは、除算は何らかの物の集合をそれぞれ同数になるように分けることで説明される。例えば、10個のリンゴを5人で分ける場合、各人は 10 ÷ 5 = 2個のリンゴを受け取ることになる。同様に、10個のリンゴを1人で分ける場合、各人は 10 ÷ 1 = 10個のリンゴを受け取る。
この考え方を使ってゼロ除算を説明できる。10個のリンゴを0人で分けるとする。各人は何個のリンゴを受け取るだろうか? 10 ÷ 0 を計算しようとしても、元の設問自体が無意味なので無意味となる。この場合、各人が受け取る個数は、0個でも、10個でも、無限個でもない。なぜなら、元々受け取るべき人はいないからである。以上のように算数レベルで考える場合、ゼロ除算は無意味または未定義となる。
ゼロ除算の未定義性を理解する別の方法として、減法の繰り返し適用という考え方がある。すなわち、余りが除数より少なくなるまで除数を繰り返し引くのである。たとえば 13 ÷ 5 を考えると、13 から 5 は 2 回引くことができ、余りは 3 となる。結果は 13 ÷ 5 = 2 あまり 3 などと記される。ゼロ除算の場合、ゼロを何度引いても余りがゼロより小さくなることはないため、無限に減法を繰り返すだけとなる。
初期の試み[編集]
628年にブラーマグプタが著した『ブラーマ・スプタ・シッダーンタ』では、0 を数として定義し、その演算結果も定義している。しかし、ゼロ除算の説明は間違っていた。彼の定義に従うと代数的不合理が生じることを簡単に証明できる。ブラーマグプタによれば、次の通りである。
「正または負の数をゼロで割ると、分母がゼロの分数となる。ゼロを正または負の数で割ると、ゼロになるか、またはゼロを分子とし有限数を分母とする分数になる。ゼロをゼロで割るとゼロになる」
830年、マハーヴィーラはブラーマグプタの間違いを著書 『ガニタ・サーラ・サングラハ』で以下のように訂正しようとして失敗した。
「数はゼロで割っても変化しない」
バースカラ2世は n⁄0 = ∞ と定義することで問題を解決しようとした。この定義はある意味では正しいが、後述の「ゼロ除算と極限」に示す問題もあり、注意深く扱わないとパラドックスに陥る。このパラドックスは近年まで考察されなかった[1]。
代数学的解釈[編集]
ゼロ除算を数学的に扱う自然な方法は、まず除算を他の算術操作で定義することで得られる。整数、有理数、実数、複素数の一般的算術規則では、ゼロ除算は未定義である。体の公理体系に従う数学的体系では、ゼロ除算は未定義のままとされなければならない。その理由は、除法が乗法の逆演算として定義されているためである。つまり、a⁄b の値は、bx = a という方程式を x について解いたときに値が一意に定まる場合のみ存在する。さもなくば、値は未定義のままとされる。
b = 0 のとき、方程式 bx = a は 0x = a または単に 0 = a と書き換えられる。つまりこの場合、方程式 bx = a は a が 0 でないときには解がなく、a が 0 であれば任意の x が解となりうる。いずれにしても解は一意に定まらず、a⁄b は未定義となる。逆に、体においては a⁄b は b がゼロでないとき常に一意に定まる。
ゼロ除算に基づく誤謬[編集]
ゼロ除算を代数学的記述に用いて、例えば以下のように 1 = 2 のような誤った証明を導くことができる。
以下を前提とする。
0 \times 1 = 0\quad
0 \times 2 = 0\quad
このとき、次が成り立つ。
0 \times 1 = 0 \times 2
両辺をゼロ除算すると、次のようになる。
\textstyle \frac{0}{0}\times 1 = \frac{0}{0}\times 2
これを簡約化すると次のようになる。
1 = 2\quad
この誤謬は、暗黙のうちに 0⁄0 = 1 であるかのように扱っていることから生じる。
上の証明が間違いであることは多くの人が気づくと思われるが、これをもっと巧妙に表現すると間違いを分かりにくくできる。例えば、1 を x と y に置き換え、ゼロを x - y、2 を x + y で置き換える。すると上記の証明は次のようになる。
(x-y)x = x^2-xy = 0
(x-y)(x+y) = x^2-y^2 = 0
したがって、
(x-y)x = (x-y)(x+y)
両辺を x - y で割ると次のようになる。
x = x+y
x = y = 1 を代入すると、次のようになる。
1 = 2
解析学的解釈[編集]
ゼロ除算と極限[編集]

関数 y =
1
x
のグラフ。x が 0 に近づくと、y は無限大に近づく。
直観的に
a
0

a
b
で 正数b を 0 に漸近させたときの極限を考えることで定義されるように見える。
a が正の数の場合、次のようになる。
\lim_{b \to 0+} \frac{a}{b} =+\infty
a が負の数の場合、次のようになる。
\lim_{b \to 0+} \frac{a}{b} =-\infty
したがって、a が正のとき
a
0
を +∞、a が負のとき -∞ と定義できるように思われる。しかし、この定義には2つの問題点がある。
第一に、正と負の無限大は実数ではない。実数の範囲内で考えたい場合、この定義には意味がない。この定義を使いたければ、何らかの形で実数を拡張する必要がある。
第二に、右側から極限に漸近するのは恣意的である。左側から漸近して極限を求めた場合、a が正の場合に a⁄0 が -∞ となり、a が負の場合に +∞ となる。これを等式で表すと次のようになる。
+\infty =\frac{1}{0} =\frac{1}{-0} =-\frac{1}{0} =-\infty
このように、+∞ と -∞ が等しいことになってしまい、これではあまり意味がない。これを意味のある拡張とするには、「符号のない無限大」という概念を導入するしかない。
実数に、正負の区別が有る、あるいは無い、無限大が含まれるように拡張したものが拡大実数である。アフィン拡大実数では区別が有り、射影拡大実数では区別が無い(無限遠点)。
物理学においてはブラックホールや宇宙の始まりを考察する際に質量/体積(密度)の体積が 0 となる特異点が発生するためゼロ除算による無限大発散の難問が生じている。この場合質量・体積は正であるため正の無限大への発散となる。
直接のゼロ除算以外では、三角関数の tan 90° などの計算においても、同様の問題が生じてしまう。
0
0
についても、極限
\lim_{(a,b)\to (0,0)} \frac{a}{b}
は存在しないため、うまく定義できない。さらに一般に、x が 0 に漸近すると共に f(x) も g(x) も 0 に漸近するとして、極限
\lim_{x\to 0} \frac{f(x)}{g(x)}
を考えても、これは任意の値に収束する可能性もあるし、収束しない可能性もある。したがって、この手法では 0⁄0 について意味のある定義は得られない。
リーマン球面[編集]
リーマン球面は、複素平面に無限遠点 ∞ の1点を付け加えて得られるもの C ∪ {∞} である。上記実射影直線(射影拡大実数)の複素数版とも考えられる。リーマン球面は複素解析において重要な概念であり、演算は例えば 1/0 = ∞、1/∞ = 0、などとなるが、∞+∞ や 0/0 は定義されない。
コンピュータにおけるゼロ除算[編集]

SpeedCrunchという電卓ソフトでゼロ除算を実行したときの様子。エラーが表示されている。
現在のほとんどのコンピュータでサポートされているIEEE 754 浮動小数点に関する標準規格では、全ての浮動小数点演算を定義している。ゼロ除算も例外ではなく、どういう値になるかが定義されている。IEEE 754の定義によれば、a/0 で a が正の数であれば、除算の結果は正の無限大となり、a が負の数であれば負の無限大となる。そして、a も 0 であった場合、除算結果は NaN(not a number、数でない)となる。IEEE 754 には -0 も定義されているため、0 の代わりに -0 で除算をした場合は、上述の符号が反転する。
整数のゼロ除算は通常、浮動小数点とは別に処理される。というのは整数ではゼロ除算の結果を表す方法がないためである。 多くのプロセッサは整数のゼロ除算を実行しようとすると例外を発生させる。この例外に対する対処がなされていない場合、ゼロ除算を実行しようとしたプログラムは強制終了(アボート)される。これは、ゼロ除算がエラーと解釈されるためで、エラーメッセージが表示されることも多い。
1997年、民生品の応用を研究していたアメリカ海軍はタイコンデロガ級ミサイル巡洋艦ヨークタウンを改造して主機のガスタービンエンジンの制御にマイクロソフトのソフトウェアを採用したが、試験航行中にデータベースのゼロ除算が発生してソフトウェアが例外を返し、結果として主機が停止、回復するまでカリブ海を2時間半ほど漂流する事態となっている[2]。https://ja.wikipedia.org/wiki/%E3%82%BC%E3%83%AD%E9%99%A4%E7%AE%97

再生核研究所声明 264 (2015.12.23):  永遠とは何か ― 永遠から

現代人は 空間とは 座標軸で表される数の組の集合 で表させるものと発想しているだろう。 基礎である直線は 実数を直線上に並べたもの、逆に直線とは 実は 実数全体の表現と考えられる。 すなわち、直線とは 基準点である原点ゼロから、正方向と負方向に正の実数と負の実数が大小関係で順序づけられ無限に双方向に伸びていると考えられる。
そこで、永遠とは 直線に時間を対応させ、限りなく正方向に進んだ先のことを 想像している。どこまでも どこまでも 先に行けばどうなるだろうか。直線上でも、平面上でも である。 砂漠の伝統を有する欧米文化の背景、キリスト教などの背後には、 永遠とは限りなく 果てしなく先にあると発想しているという。 どこまでも、どこまでも きりのない世界である。 ユークリッド幾何学が そのような空間を考えていることは確かである。
ところが四季に恵まれたアジアの民は、限りなく広がる世界に、不安や淋しさを直感して、 正の先と、負の先が一致していて、直線は円で どこまでも どこまでも行くと反対方向から、現在に至り、永遠は繰り返しであると、四季の繰り返し、天空の繰り返し、円運動のように発想して 仄かな安心感を覚えているという。永劫回帰、輪廻の思想を深く懐いている。実に面白いことには 美しい複素解析学では、立体射影の考えによって、直線を球面上の円と表現し、無限遠点の導入によって、 これらの思想を 数学的に厳格に実現させ、全ユークリッド平面の全貌を捉え、無限の彼方さえ捉えることが出来た。 その時 永遠を 確かに捉え、掴むことさえ出来たと言える。立体射影による球面上の北極に 確かに存在すると言える。素晴しい、数学を手に入れていた。この美しい数学は 100年以上もリーマン球面として、複素解析学の基本となってきている。
ところが2014.2.2偶然に発見されたゼロ除算の結果は、この無限遠点が 実は原点に一致していた という衝撃的な事実を述べていた。 永遠、無限の彼方と想像していたら、それが 実は原点に戻っていたという事実である。 それが我々の数学であり、ユークリッド空間の実相である。幾何学の性質や物理的な法則をきちんと説明している、我々の世界の数学である。
それで、永遠や無限遠点、我々の空間の 十分先の考え方、発想を考える必要がある。
無限の先が原点に一致している事実、それを如何に理解すべきであろうか。
それについて、 次のように解説してきた:

再生核研究所声明232(2015.5.26)無限大とは何か、無限遠点とは何か。― 驚嘆すべきゼロ除算の結果
再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観

新しい世界観は 始まりから始まり 最後には 突然戻るということを述べている。 しからば、始めとは何で 終りとは何だろうか。 これについて、 始めも終わりも、質的な変化であると定義できるのではないだろうか。 簡単な数学で万物、universe の現象を説明するのは難しい状況は確かにあるだろう.しかし、ゼロ除算の思想は、新羅万象が絶えず変化して 繰り返している様を表現しているように感じられる。
大事な人生の視点は 今日は 明日のためや遠い未来のためにあるのではなく、 現在、現在における在るべき適切な在りようが大事だと言っているようである。もちろん、現在は、未来と過去に関係する存在であり、それらは関係付けられ、繋がっているが 焦点はもちろん、 現在にあるということである。
ビッグバンの宇宙論は 適切に理解され、始めとは 大きな変化で 現状の元が始まり、
やがて突然、元に戻って 終わることを暗示しているようである。人生とは 要するに 内なる自分と環境に調和するように在れ と ゼロ除算は言っているようである。

ゼロ除算は 仏教の偉大なる思想 を暗示させているように感じられる。

以 上

再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観
最近展開しているゼロ除算が、新しい世界観を示しているのは 大変興味深い。直線とは一体どうなっているだろうか.空間とはどのようになっているだろうか。これについて、現代人は、双方向にどこまでも どこまでも 続いている直線を想像するであろう。限りなく広がった平面や空間である。ところが 立体射影によって 平面全体を球面上に1対1に写せば、全平面は 球面から北極を除いた球面上に1対1にきちんと写るから、無限に広がる 全平面の全貌が捉えられる。ところが平面上には存在しない想像上の点 それはあらゆる方向に限りなく遠くに存在する無限遠点の導入によって、その点を球面の欠けた1点北極に対応させれば、無限遠点を含めた平面全体は 球面全体と1対1にきちんと対応する。
このような対応で 平面上の円や直線全体は 球面上では共に円に対応するという美しい対応になり、平面上の直線は 球面上では、北極(無限遠点)を通る円に写ると、直線と円の区別は 球面上では不要になる。また、平面上の平行線とは 無限遠点で 角度ゼロで交わっている(接している)と平面上の構造がよく見えて、無限遠点を含めての平面の全構造が 捉えられる。このように、考えると、直線とは、球面上では北極を通る円、平面上では無限遠点を通る直線となる。この構造は、直線を1方向にどこまでも, どこまでも進めば、無限遠点を 通って、逆方向から戻ってくるという、永劫回帰の思想をちょうど実現している。それは、球面上では、 円を繰り返し回ることを意味する。 その様は 何もかも すっかり良く見える。
これが、従来100年以上も続いた世界観で、関数y=x やW=zは 無限遠点に近づけば、それらの像も無限遠点に近づいていると考えるだろう。 関数y=x の値は正方向にどんどん行けば、どんどん大きくなると考えるだろう。
しかるに、ゼロ除算1/0=0は、それらの関数は無限遠点にいくらでも近づくと 無限遠点にいくらでも近づくが、無限遠点自身では、突然ゼロになっていることが 幾何学的にも確認された。上記、北極は 実は原点ゼロに一致しているという。
話しを簡単にするために、 関数y=x を考えよう。右に行けば、プラス無限に、負の方向左に行けば 負の無限に限りなく近づくは 従来通りである。ところが、ゼロ除算では いずれの方向でも上記無限遠点では 値ゼロをきちんと取っているという。ゼロ除算の数学では、どんどん、増加した先、突然、ゼロ、原点に戻っているという。また、円でも球面でも半径Rをどんどん大きくすると、当然、円の面積や球の体積はどんどん限りなく大きくなるが、半径が無限のとき、突然、それらはゼロになるという。それらの理由も数学ばかりではなく、幾何学的にも明確に見えている。
この数学的な事実は、我々の世界、宇宙がどんどん拡大して行くと突然、ゼロに帰するということを暗示させている。 ― これは 宇宙回帰説を意味しているようである。
これは、ユニバースの普遍的な現象、どんどん進んだ先が、元に突然戻る原理を示しているようである。
そもそも人生とは如何なるものか。― よくは分からないが、事実として、生まれて、どんどん物心がついて、人間として精神活動が活発化して、多くは本能原理によって生かされて、そして、突然元に戻ることを意味しているようである。このことを深く捉えられれば、世界がよりよく観え、悟りの境地に達する大きなヒントを得ることができるだろう。

ここでは ゼロ除算の帰結として、宇宙回帰説、ユニバースの回帰説を唱えたい。この考えでは、どんどん進めば、突然元に戻るという原理を述べている。珠算における 御破算で願いましては で 再び始めることを想起させる。これは、また、reset と同様であると考えられる。

以 上


Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/

割り算のできる人には、どんなことも難しくない

世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。

ベーダ・ヴェネラビリス

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年


再生核研究所声明259 (2015.12.04) 数学の生態、旬の数学 ―ゼロ除算の勧め

数学とは何だろうかと問うてきたが(No.81, May 2012(pdf 432kb) www.jams.or.jp/kaiho/kaiho-81.pdf)違う観点から、はじめに数学の生態について外観して、ゼロ除算の研究の勧めを提案したい。

純粋数学の理論は 恰も人間とは無関係に存在して、まるで神の言語のように感じられるが、しかしながら、生活している人間、関与している人間、またそれらを支えている社会が数学の発展の行くすえ、成長の生態に反映されているのは事実である。実際、最も古く、超古典のユークリッド幾何学の発展、現状を見れば、数学の生態の様を見ることができる。その幾何学は 素朴に土地を測るという、現実の要求から生まれ、知的要求で言わば社会との関わりを有しないレベルまで発展して、膨大な理論体系が作られたが、現在では研究の専門家がいない程に確立した理論とされている。研究課題としては終わっていると考えられる。多くの数学も同様な経過を辿っている様を見ることができる。多くは物理学やいろいろな現象から新しい数学が生まれた例は多いが、ここは、素朴な数学の具体例、基本的な問題から、新しい数学が生まれ、発展して、やがて、細分化、孤立化した結果に至って 衰退している様を 数学の生態として捉えることができるだろう。社会との関係が薄く、興味を抱く人が少なくなれば、その数学は衰退すると ―すなわち 誰もやらなくなり、殆ど忘れされていくことになるだろう。この意味で、多くの数学も、花の命や人の一生のように 夢多き時期、華やいだ時期、衰退して行く時期といろいろな時期があると考えるのが妥当ではないだろうか。基本的で、新規な結果がどんどん展開されるときは、その数学の発展期で、活動期にあると考えられる.他方、他との関係が付かず、興味、関心を抱く者が少なくなれば、既に衰退期にあり、研究は労あって成果は小さいと言えよう。
数学を言わば輸入に頼っている国では、価値観も定かではなく、権威ある、あるいは数学の未解決問題の解明や小さな部分の形式的な拡張や精密化に力を入れている現実がある。見るだけでうんざりしてしまう論文は 世に多いと言える:

再生核研究所声明128 (2013.8.27):  数学の危機、 末期数学について
(特に純粋数学においては、考えられるものは何でも考える自由な精神で真理の追究を行なっているから(再生核研究所声明36:恋の原理と心得)、一旦方向が、課題が定まると、どんどん先に研究が進められる。基本的な精神は 内部における新しい概念と問題の発掘、拡張、すなわち一般化と精密化、そして他の数学との関係の追求などである。それらがどんどん進むと、理解出来る者、関心を抱く者がどんどん少なくなり、世界でも数人しか興味を抱く者がいないという状況になり、そのような状況は 今や珍しくはないと言える。 ― 興味以前に分からない、理解できないが 殆どであると言える。 また、何のための結果かと問われる結果が 現代数学の大部分を占めていると言えるだろう。特に数学内部の興味本位の結果は そのような状況に追い込まれ、数学の末期的状況の典型的な形相と言えるだろう。実際、相当なブームに成っていた数学の分野が、興味や関心を失い、世界でも興味を抱く者が殆どいなくなる分野は 結構実在する。それらの様は、さまざまな古代遺跡のように見えるだろう。― 夏草や兵どもが夢の跡(なつくさや つわものどもがゆめのあと):松尾芭蕉。
もちろん、数学は、時間によらないようであるから、オイラーの公式のように、基本的で美しく、いろいろ広く関係しているような結果は、普遍 (不変) 的な価値を 有すると言える。)

どの辺の数学に興味を抱くは、個人の好みであるが、最近考えられているゼロ除算は極めて初期の段階にあり、夢多き段階にあると見られので、広く世に状況を公表して、ゼロ除算の研究を推進したい。
 
ゼロ除算は、西暦628年インドでゼロが記録されて以来の発見で、全く未知の新しい数学、前人未到の新世界の発見である。すなわち、ゼロで割るは 不可能であるがゆえに 考えてはいけないとされてきたところ、ゼロで割ることができるとなったのであるから、全く未知の世界を探検できる。 既に数学的には確立され、物理的、幾何学的にも実証されている。 最近、素人にも分かるような例が結構発見されてきたので、 広く 世にそのような面白い新しい現象の発見を呼びかけたい。まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、関数y = 1/x のグラフは、原点で ゼロであると述べている。すなわち、 1/0=0 である。それらは 既に 数の実体である と言える。
― 要点は、上記直角双曲線は、原点で猛烈な不連続性を有し、爆発や衝突、コマで言えば、 中心の特異性などの現象を記述していることである。複素解析学では、1/0として、無限遠点が存在して、美しい世界であるが、無限遠点は 数値としては ゼロが対応する。
現在までに発見されたゼロ除算の実現例を簡単に列挙して置こう:
万有引力の法則で、2つの質点が一致すれば、引力はゼロである;一定の角速度で回転している回転体の中心で、角速度はゼロで、中心で不連続性を有している;光の輝度は 光源でゼロであること:円の中心の鏡像は 無限遠点ではなくて、中心そのものであるという強力な不連続性;電柱の微小な左右の揺れから、真っ直ぐに立った電柱の勾配はゼロであり、左右からマイナス無限とプラス無限の傾きの一致として、傾きゼロが存在している; 代数的には ゼロ除算z/0=0を含む簡単な体の構造が明らかにされ、数体系として自然な体系である複素数体より ゼロ除算z/0=0を含むY体 の方が自然であると考えられること; 点の曲率がゼロであること、などである。
さらに、原始的なテコの原理にもゼロ除算は明確に現れ、初等幾何学にも明確に現れ、例えば、半径Rの円をどんどん大きくすると,円の面積はいくらでも大きくなるが、半径が無限になると突然、その面積はゼロになることが認識された。 Rが無限になると円は直線になり、円は壊れて半空間になるからである。 このことの明確な意味が数学的に捉えられ、一般に図形が壊れる現象をゼロ除算は表していることが分かった。これらの現象は ゼロ除算が 普遍的に存在する現象を説明するもの と考えられる。
また、ゼロ除算において 無限遠点が 数値では ゼロで表されることは 驚嘆すべきことであり、それではuniverse は一体どうなっているのかと、真智への愛の 激しい情念が湧いてくるのではないだろうか。ゼロ除算は、数学ばかりではなく、物理学や世界観や文化にも大きな影響を与える:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界

ゼロ除算の最も関与している研究は まず 第1に複素解析学への影響、複素解析学の研究ではないだろうか。 実際、ゼロ除算は、ローラン展開そのものの見方から始まり、それは佐藤の超関数や特異積分などに関係している。
第2は、 ゼロ除算の物理学への影響である。 これは、ニュートンの万有引力の法則など多くの物理法則の公式に、ゼロ除算が現れているので、それらに対する新しい結果の解釈、影響である。
第3は ゼロ除算の代数的な、あるいは作用素論的な研究である。これらも始まったばかりであり、出版が確定している論文:

S.-E. Takahasi, M. Tsukada and Y.Kobayashi, Classification of continuous fractional binary operators on the realand complex fields, Tokyo Journal of Mathematics {\bf 8}(2015), no.2 (in press).
がそれらの最先端である。

これらの分野では、誰でも先頭に立てる全く新しい研究分野と言える。
全く、新しい研究分野となると、若い人がやみくもに挑戦するのは危険だと考えるのは、 よく理解できるが、ある程度自己の研究課題が確立していて、多少の余裕がみいだせる方は、新しい世界を自分の研究課題と比較しながら、ちょっと覗いてみるかは、面白いのではないだろうか。思わぬ関係が出てくるのが、数学の研究の楽しさであると言える面は多い。アメリカ新大陸に初めて移った人たちの想い、 ピッツバーグの地域に初めて移住した人たちの想いを想像してみたい。ゼロ除算は 新しい数学である。専門家はいないから、多くの人が面白い現象を発見できる機会があると考えられる。

次も参考:

再生核研究所声明189(2014.12.233) ゼロ除算の研究の勧め
再生核研究所声明222(2015.4.8) 日本の代表的な数学として  ゼロ除算の研究の推進を求める
再生核研究所声明253(2015.10.28) 私も探そう ―ゼロ除算z/0=0 の現象

以 上

追記: ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/

再生核研究所声明222(2015.4.8)日本の代表的な数学として  ゼロ除算の研究の推進を求める

ゼロ除算の成果は 2015.3.23 明治大学で開催された日本数学会で(プログラムは5200部印刷、インターネットで公開)、海外約200名に経過と成果の発表を予告して 正規に公開された。簡単な解説記事も約200部学会で配布された。インターネットを用いて1年以上も広く国際的に議論していて、骨格の論文も出版後1年以上も経過していることもあり、成果と経過は一応の諒解が広く得られたと考えても良いと判断される。経過などについては 次の一連の声明を参照:

再生核研究所声明148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30) ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17) ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20) ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30) 掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15) ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
再生核研究所声明192(2014.12.27) 無限遠点から観る、人生、世界
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)― 
再生核研究所声明194(2015.1.2) 大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3) ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4) ゼロ除算に於ける山根の解釈100= 0x0について
再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
再生核研究所声明202(2015.2.2) ゼロ除算100/0=0,0/0=0誕生1周年記念声明 ― ゼロ除算の現状と期待
再生核研究所声明215(2015.3.11) ゼロ除算の教え

日本の数学が、欧米先進国のレベルに達していることは、国際研究環境の実情を見ても広く認められる。しかしながら、初等教育から大学学部レベルの基本的な数学において 日本の貢献は 残念ながら特に見当たらないと言わざるを得ない。これは日本の数学が 大衆レベルでは 世界に貢献していないことを意味する。これについて 関孝和の微積分や行列式の発見が想起されるが、世界の数学史に具体的な影響、貢献ができなかったこともあって 関孝和の天才的な業績は 残念ながら国際的に認知されているとは言えない。
そこで、基本的なゼロ除算、すなわち、四則演算において ゼロで割れないとされてきたことが、何でもゼロで割れば ゼロであるとの基本的な結果は、世界の数学界における 日本の数学の顕著なものとして 世界に定着させる 良い題材ではないだろうか。
内容の焦点としてはまず:
ゼロ除算の発見、
道脇方式によるゼロ除算の意味付け、除算の定義、
高橋のゼロ除算の一意性、
衝突における山根の現象の解釈、
の4点が挙げられる。
6歳の道脇愛羽さんが、ゼロ除算は 除算の固有の意味から自明であると述べられていることからも分かるように、ゼロ除算は、ピタゴラスの定理を超えた基本的な結果であると考えられる。
ゼロ除算の研究の発展は 日本の代表的な数学である 佐藤の超関数の理論と密接な関係にあり(再生核研究所声明200)、他方、欧米では Aristotélēs の世界観、universe は連続である との偏見に陥っている現状がある。 最後にゼロ除算の意義 に述べられているように ゼロ除算の研究は 日本の数学として発展させる絶好の分野であると考えられる。 そこで、広く関係者に研究の推進と結果の重要性についての理解と協力を求めたい。
ゼロ除算の意義:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 1/0=0, 0/0=0をもたらしたこと。
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、 独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。

11)ゼロ除算が可能であるか否かの議論について:

現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。

12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界

ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として受け入れることである。

以 上

ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269


1+0=1 1ー0=0 1×0=0  では、1/0・・・・・・・・・幾つでしょうか。
0???  本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・
割り算を掛け算の逆だと定義した人は、誰でしょう???
まして、10個のリンゴを0人で分けた際に、取り分 が∞個の小さな部分が取り分は、どう考えてもおかしい・・・・
受け取る人がいないわけですから、取り分は0ではないでしょうか。 すなわち何でも0で割れば、0が正しいのではないでしょうか。じゃあ聞くけど、∞個は、どれだけですか???

小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
https://www.pinterest.com/pin/234468724326618408/

もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。



Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/

割り算のできる人には、どんなことも難しくない

世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。

ベーダ・ヴェネラビリス

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年

1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)

原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・

 加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849/a37209195?sort=1&fr=chie_my_notice_canso

数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_

0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。

http://www.mirun.sctv.jp/~suugaku/%E5%A0%AA%E3%82%89%E3%81%AA%E3%81%8F%E6%A5%BD%E3%81%97%E3%81%84%E6%95%B0%E5%AD%A615.5.htm

世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでもセロであるという意外な結果が得られた。

無限遠点は存在するが、無限大という数は存在しない・・・・

天動説・・・・・・∞
地動説・・・・・・0

1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。

『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
何とゼロ除算は、可能になるだろうと April 12, 2011 に 公に 予想されていたことを 発見した。

多くの数学で できないが、できるようになってきた経緯から述べられたものである。


Dividing by Nothing
by Alberto Martinez
It is well known that you cannot divide a number by zero. Math teachers write, for example, 24 ÷ 0 = undefined.

After all, other operations that seemed impossible for centuries, such as subtracting a greater number from a lesser, or taking roots of negative numbers, are now common. In mathematics, sometimes the impossible becomes possible, often with good reason.

Posted April 12, 2011More Discoverhttps://notevenpast.org/dividing-nothing/

アラビア数字の伝来と洋算 - tcp-ip
明治5年(1872)
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf

地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0
地球人はどうして、ゼロ除算1300年以上もできなかったのか?  2015.7.24.9:10 意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 生態系では、人類が がん細胞であった とならないとも 限らないのでは?

ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_


ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997

Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。

ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。

∞÷0はいくつですか・・・・・・・

∞とはなんですか・・・・・・・・

分からないものは考えられません・・・・・

宇宙消滅説:宇宙が、どんどんドン 拡大を続けると やがて 突然初めの段階 すなわち 0に戻るのではないだろうか。 ゼロ除算は、そのような事を言っているように思われる。 2015年12月3日 10:38







0 件のコメント:

コメントを投稿