ニコラウス・コペルニクス(ラテン語名: Nicolaus Copernicus、ポーランド語名: ミコワイ・コペルニク Mikołaj Kopernik、1473年2月19日 - 1543年5月24日)は、ポーランド出身の天文学者、カトリック司祭である。当時主流だった地球中心説(天動説)を覆す太陽中心説(地動説)を唱えた。これは天文学史上最も重要な再発見とされる。太陽中心説をはじめて唱えたのは紀元前三世紀のサモスのアリスタルコスである。
コペルニクスはまた、教会では司教座聖堂参事会員(カノン)であり、知事、長官、法学者、占星術師であり、医者でもあった。暫定的に領主司祭を務めたこともある。
1965年より発行されていた1000ズウォティ紙幣に彼の肖像が使用されていた。
目次 [非表示]
1 人物伝
2 『天体の回転について』とローマ教皇庁
3 ナチス政権下での国籍論争
4 主な業績
5 元素名
6 脚注
7 参考書
8 関連項目
9 外部リンク
人物伝[編集]
コペルニクスの生家
トルン旧市街広場
母方の叔父ルーカス
クラクフ大学コレギウム・マイウス(大カレッジ)
恩師のブルゼフスキ教授
ボローニャ大学
クラクフ大学コレギウム・マイウス(大カレッジ)のヤギェウォ教室
ここでコペルニクスが学んだ
フロムボルク大聖堂
(フロムボルク城内)
コペルニクスの塔
(フロムボルク城内)
司教座聖堂参事会員として赴任してきたコペルニクスの住居兼執務室
第二次大戦で破壊され、戦後に復元された
コペルニクスは、1473年にトルンで生まれた。生家は旧市街広場の一角にある。トルンは1772年のポーランド分割によってプロイセン王国領となり、現在はポーランドの一部に復帰している。ナチス時代にはドイツ人かポーランド人かで論争がおこなわれたが、現在ではドイツ系ポーランド人と思われている。ポーランド・リトアニア共和国は単一民族による国民国家ではなく、ポーランド王に従う多民族国家であったため、ポーランド人、リトアニア人、ドイツ人、チェコ人、スロバキア人、ユダヤ人、ウクライナ人、ベラルーシ人、ラトビア人、エストニア人、タタール人などが民族に関係なく暮らしており、ポーランドの市民権を持っている人は皆「ポーランド人」であった。王国内の共通言語はラテン語とポーランド語であり、クラクフ大学で大学教育を受けてもいることから、コペルニクスが日常生活に困らない程度のポーランド語を話すことができたことは推定されているが、本人がポーランド語で書いたものは現在発見されておらず、彼が実際に日常会話以上のポーランド語をどの程度使えたかは定かではない。
彼の姓の「コペルニクス」はラテン語表記の Copernicus を日本語で読み下したもので、ポーランド語では「コペルニク (Kopernik) 」となる。ポーランド語で「銅屋」の意味。すなわち彼は「銅屋のミコワイ(ニコラウス)」である。父方の一族のコペルニク家はポーランドのシレジア地方オポーレ県にある古い銅山の街コペルニキ (Koperniki) の出身。シレジア地方は13世紀のモンゴルによるポーランド侵攻で住民が避難して散り散りとなるか逃げ遅れて殺されるかして人口が大きく減少したため、ポーランドの当地の諸侯は復興のために西方から多くのドイツ人移民を招いている(ドイツ人の東方殖民)。そのなかでコペルニクスの父方の先祖(の少なくとも一部)もドイツの各地からやってきて、そのため一族がドイツ語を母語としていたものと推測される。
10歳の時、銅を商う裕福な商売人だった父親が亡くなり、母親のバルバラ・ヴァッツェンローデ (Barbara Watzenrode) は既に亡くなっていた。そのため、母方の叔父であるルーカス・ヴァッツェンローデ (Lucas Watzenrode) が父の死後、コペルニクスと兄弟を育てた。ルーカスは当時教会の律修司祭(カノン)であり、後にヴァルミア (Warmia) の領主司教となった。コペルニクスの兄弟アンドレーアス (Andreas) はポーランド王領プロイセンのフロムボルク(ドイツ語: フラウエンブルク Frauenburg)のカノンとなり、妹バルバラ (Barbara) はベネディクト修道院の修道女となった。他の妹カタリーナ (Katharina) は市の評議委員だったバルテル・ゲルトナー (Barthel Gertner) と結婚した。
1491年にコペルニクスはクラクフ大学に入学し、月の精密な軌道計算を史上はじめて行った著名な天文学者で従来より定説とされていた天動説に懐疑的な見解を持っていたアルベルト・ブルゼフスキ教授によってはじめて天文学に触れた。さらにニコラウスが化学に引き込まれていたことが、ウプサラの図書館に収蔵されている当時の彼の本からも窺うことができる。卒業後、叔父の計らいで聖堂の職につき生活の保障を得、4年と少しの間トルンにいたあと、1496年から1503年にかけて留学し、イタリアのボローニャ大学やパドヴァ大学で法律(ローマ法)について学び博士号を取得した。教育に援助をしていた叔父は彼が司祭になることを望んでいたが、カノンとローマ法について学んでいる間に、彼の恩師であり著名な天文学者であるドメーニコ・マリーア・ノヴァーラ・ダ・フェッラーラと出会い、その弟子となった。
やがてノヴァーラの影響により本格的に地動説に傾倒し、天動説では周転円により説明されていた天体の逆行運動を、地球との公転速度の差による見かけ上の物であると説明するなどの理論的裏付けを行っていった。ただしコペルニクスは惑星は完全な円軌道を描くと考えており、その点については従来の天動説と同様であり単にプトレマイオスの天動説よりも周転円の数を減らしたに過ぎない。実際には惑星は楕円軌道を描いていることは、ヨハネス・ケプラーにより発見された(もっとも天体が円運動を描いているという仮定により、天文学者は天体の逆行運動の説明を迫られたのであり、そういう思い込みが存在しなかったのならそもそも天体運動を探求する動機すら存在しなかったのであり、コペルニクスが円運動にこだわった限界はやむを得なかったとする評がある[1])。
1526年にはクラクフ大学時代のブルゼフスキ教授の天文学の講座の同窓の先輩で親友の地図学者ベルナルド・ヴァポフスキ (Bernard Wapowski) がポーランド王国とリトアニア大公国の版図全体の地図を作成した際、コペルニクスはその事業を手伝った[2]。多くの仕事をする一方、フロムボルクの聖堂付近の塔で天体の観測・研究を続け、新しい理論の創造に向かっていた。一方で1535年、「地球の動き方」に関するコペルニクスの重要な論文の出版に向けてはヴァポフスキは力を貸し、出版を請け負っていたウィーンの関係者へ手紙を書いて出版の催促をするなどしている。ヴァポフスキはこの手紙を出した2週間後に他界したため、論文の出版を見届けることはなかった。
コペルニクスの遺物
オルシュティンの聖ヤコブ大聖堂
自己の地動説の発表による影響を恐れたコペルニクスは、主著『天体の回転について』の販売を1543年に死期を迎えるまで許さなかった(彼自身は死去時に本が出版され、完成した書物を見ることなく逝ったと言われている)。シュチェチン大学などのチームが2004年から発掘を進め、大聖堂の深さ約2メートルの場所から2005年夏、遺骨を発見した。
この遺骨は肖像画と頭蓋骨が互いに非常に似ていて、時代と年齢もほぼ一致していたので、遺骨がコペルニクスのものである可能性が高まった。2008年11月、シュチェチン大学とスウェーデンのウプサラ大学との共同で、この遺骨と、他の場所で4世紀以上も保管されていたコペルニクスのものとされる毛髪とのDNA鑑定を行い、両者のDNAの一致によりこの遺骨がコペルニクスのものと最終的に認定された。
『天体の回転について』とローマ教皇庁[編集]
1616年、ガリレオ・ガリレイに対する裁判が始まる直前に、コペルニクスの著書『天体の回転について』は、ローマ教皇庁から閲覧一時停止の措置がとられた。これは、地球が動いているというその著書の内容が、『聖書』に反するとされたためである。(因みに「聖書」には天動説が載っているわけではなく「初めに、神は天地を創造された」という記述があるだけである。) ただし、禁書にはならず、純粋に数学的な仮定であるという注釈をつけ、数年後に再び閲覧が許可されるようになった。
アメリカ合衆国の科学関連のゴンゾー・ジャーナリズム雑誌OMNIの創設者の一人であるアマチュア科学研究者ディック・テレシによると、このアイデアはアラビア自然学からの剽窃であり、また近代社会における西欧の興隆にともない、西洋中心主義および白人中心主義史観によって、非西欧文明圏の影響を故意に見落としてきたことがあるとしている[3]。
ナチス政権下での国籍論争[編集]
ヤン・マテイコによるコペルニクスの肖像『コペルニクス: 神との対話』
ドイツでナチスが勢力を誇っていた時代は、彼がポーランド人かドイツ人かが大きな論争の的となった(コペルニクスの国籍論争)が、現在は「多民族国家ポーランド王国の国民(すなわち国籍はポーランド人)であり、クラクフの大学を出るなどポーランドの教育を受けた、この地方のドイツ語の方言を母語とする家系(民族はドイツ人)出身の人物」、すなわち「ドイツ系ポーランド人」ということで落ち着いている。
主な業績[編集]
1510年頃 「コメンタリオルス」(Comentariolus、同人誌)
太陽中心説(地動説)をはじめて公にした。
1528年 『貨幣鋳造の方法』(Monetae Cudendae Ratio)
経済学でいうグレシャムの法則を提唱した。
1543年 『天体の回転について』[4][5](De Revolutionibus Orbium Coelestium)
コペルニクスの主著。地動説を元に、実際に星の軌道計算を行った。
元素名[編集]
超アクチノイド元素のひとつ、原子番号112の元素はコペルニクスにちなんで "copernicium"(コペルニシウム)と命名された。この新元素名 "copercinium" は2009年に発見者であるドイツの重イオン研究所 (GSI) により提案された。その後 2010年の2月19日、コペルニクスの誕生日に合わせて IUPAC(国際純正・応用化学連合)から正式名として発表された[6]。その発表文の中では、コペルニクスが考えた太陽系のモデルが、ニールス・ボーアによる原子モデルに通じると述べられている。https://ja.wikipedia.org/wiki/%E3%83%8B%E3%82%B3%E3%83%A9%E3%82%A6%E3%82%B9%E3%83%BB%E3%82%B3%E3%83%9A%E3%83%AB%E3%83%8B%E3%82%AF%E3%82%B9
再生核研究所声明 264 (2015.12.23): 永遠とは何か ― 永遠から
現代人は 空間とは 座標軸で表される数の組の集合 で表させるものと発想しているだろう。 基礎である直線は 実数を直線上に並べたもの、逆に直線とは 実は 実数全体の表現と考えられる。 すなわち、直線とは 基準点である原点ゼロから、正方向と負方向に正の実数と負の実数が大小関係で順序づけられ無限に双方向に伸びていると考えられる。
そこで、永遠とは 直線に時間を対応させ、限りなく正方向に進んだ先のことを 想像している。どこまでも どこまでも 先に行けばどうなるだろうか。直線上でも、平面上でも である。 砂漠の伝統を有する欧米文化の背景、キリスト教などの背後には、 永遠とは限りなく 果てしなく先にあると発想しているという。 どこまでも、どこまでも きりのない世界である。 ユークリッド幾何学が そのような空間を考えていることは確かである。
ところが四季に恵まれたアジアの民は、限りなく広がる世界に、不安や淋しさを直感して、 正の先と、負の先が一致していて、直線は円で どこまでも どこまでも行くと反対方向から、現在に至り、永遠は繰り返しであると、四季の繰り返し、天空の繰り返し、円運動のように発想して 仄かな安心感を覚えているという。永劫回帰、輪廻の思想を深く懐いている。実に面白いことには 美しい複素解析学では、立体射影の考えによって、直線を球面上の円と表現し、無限遠点の導入によって、 これらの思想を 数学的に厳格に実現させ、全ユークリッド平面の全貌を捉え、無限の彼方さえ捉えることが出来た。 その時 永遠を 確かに捉え、掴むことさえ出来たと言える。立体射影による球面上の北極に 確かに存在すると言える。素晴しい、数学を手に入れていた。この美しい数学は 100年以上もリーマン球面として、複素解析学の基本となってきている。
ところが2014.2.2偶然に発見されたゼロ除算の結果は、この無限遠点が 実は原点に一致していた という衝撃的な事実を述べていた。 永遠、無限の彼方と想像していたら、それが 実は原点に戻っていたという事実である。 それが我々の数学であり、ユークリッド空間の実相である。幾何学の性質や物理的な法則をきちんと説明している、我々の世界の数学である。
それで、永遠や無限遠点、我々の空間の 十分先の考え方、発想を考える必要がある。
無限の先が原点に一致している事実、それを如何に理解すべきであろうか。
それについて、 次のように解説してきた:
再生核研究所声明232(2015.5.26)無限大とは何か、無限遠点とは何か。― 驚嘆すべきゼロ除算の結果
再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観
新しい世界観は 始まりから始まり 最後には 突然戻るということを述べている。 しからば、始めとは何で 終りとは何だろうか。 これについて、 始めも終わりも、質的な変化であると定義できるのではないだろうか。 簡単な数学で万物、universe の現象を説明するのは難しい状況は確かにあるだろう.しかし、ゼロ除算の思想は、新羅万象が絶えず変化して 繰り返している様を表現しているように感じられる。
大事な人生の視点は 今日は 明日のためや遠い未来のためにあるのではなく、 現在、現在における在るべき適切な在りようが大事だと言っているようである。もちろん、現在は、未来と過去に関係する存在であり、それらは関係付けられ、繋がっているが 焦点はもちろん、 現在にあるということである。
ビッグバンの宇宙論は 適切に理解され、始めとは 大きな変化で 現状の元が始まり、
やがて突然、元に戻って 終わることを暗示しているようである。人生とは 要するに 内なる自分と環境に調和するように在れ と ゼロ除算は言っているようである。
ゼロ除算は 仏教の偉大なる思想 を暗示させているように感じられる。
以 上
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観
最近展開しているゼロ除算が、新しい世界観を示しているのは 大変興味深い。直線とは一体どうなっているだろうか.空間とはどのようになっているだろうか。これについて、現代人は、双方向にどこまでも どこまでも 続いている直線を想像するであろう。限りなく広がった平面や空間である。ところが 立体射影によって 平面全体を球面上に1対1に写せば、全平面は 球面から北極を除いた球面上に1対1にきちんと写るから、無限に広がる 全平面の全貌が捉えられる。ところが平面上には存在しない想像上の点 それはあらゆる方向に限りなく遠くに存在する無限遠点の導入によって、その点を球面の欠けた1点北極に対応させれば、無限遠点を含めた平面全体は 球面全体と1対1にきちんと対応する。
このような対応で 平面上の円や直線全体は 球面上では共に円に対応するという美しい対応になり、平面上の直線は 球面上では、北極(無限遠点)を通る円に写ると、直線と円の区別は 球面上では不要になる。また、平面上の平行線とは 無限遠点で 角度ゼロで交わっている(接している)と平面上の構造がよく見えて、無限遠点を含めての平面の全構造が 捉えられる。このように、考えると、直線とは、球面上では北極を通る円、平面上では無限遠点を通る直線となる。この構造は、直線を1方向にどこまでも, どこまでも進めば、無限遠点を 通って、逆方向から戻ってくるという、永劫回帰の思想をちょうど実現している。それは、球面上では、 円を繰り返し回ることを意味する。 その様は 何もかも すっかり良く見える。
これが、従来100年以上も続いた世界観で、関数y=x やW=zは 無限遠点に近づけば、それらの像も無限遠点に近づいていると考えるだろう。 関数y=x の値は正方向にどんどん行けば、どんどん大きくなると考えるだろう。
しかるに、ゼロ除算1/0=0は、それらの関数は無限遠点にいくらでも近づくと 無限遠点にいくらでも近づくが、無限遠点自身では、突然ゼロになっていることが 幾何学的にも確認された。上記、北極は 実は原点ゼロに一致しているという。
話しを簡単にするために、 関数y=x を考えよう。右に行けば、プラス無限に、負の方向左に行けば 負の無限に限りなく近づくは 従来通りである。ところが、ゼロ除算では いずれの方向でも上記無限遠点では 値ゼロをきちんと取っているという。ゼロ除算の数学では、どんどん、増加した先、突然、ゼロ、原点に戻っているという。また、円でも球面でも半径Rをどんどん大きくすると、当然、円の面積や球の体積はどんどん限りなく大きくなるが、半径が無限のとき、突然、それらはゼロになるという。それらの理由も数学ばかりではなく、幾何学的にも明確に見えている。
この数学的な事実は、我々の世界、宇宙がどんどん拡大して行くと突然、ゼロに帰するということを暗示させている。 ― これは 宇宙回帰説を意味しているようである。
これは、ユニバースの普遍的な現象、どんどん進んだ先が、元に突然戻る原理を示しているようである。
そもそも人生とは如何なるものか。― よくは分からないが、事実として、生まれて、どんどん物心がついて、人間として精神活動が活発化して、多くは本能原理によって生かされて、そして、突然元に戻ることを意味しているようである。このことを深く捉えられれば、世界がよりよく観え、悟りの境地に達する大きなヒントを得ることができるだろう。
ここでは ゼロ除算の帰結として、宇宙回帰説、ユニバースの回帰説を唱えたい。この考えでは、どんどん進めば、突然元に戻るという原理を述べている。珠算における 御破算で願いましては で 再び始めることを想起させる。これは、また、reset と同様であると考えられる。
以 上
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
再生核研究所声明259 (2015.12.04) 数学の生態、旬の数学 ―ゼロ除算の勧め
数学とは何だろうかと問うてきたが(No.81, May 2012(pdf 432kb) www.jams.or.jp/kaiho/kaiho-81.pdf)違う観点から、はじめに数学の生態について外観して、ゼロ除算の研究の勧めを提案したい。
純粋数学の理論は 恰も人間とは無関係に存在して、まるで神の言語のように感じられるが、しかしながら、生活している人間、関与している人間、またそれらを支えている社会が数学の発展の行くすえ、成長の生態に反映されているのは事実である。実際、最も古く、超古典のユークリッド幾何学の発展、現状を見れば、数学の生態の様を見ることができる。その幾何学は 素朴に土地を測るという、現実の要求から生まれ、知的要求で言わば社会との関わりを有しないレベルまで発展して、膨大な理論体系が作られたが、現在では研究の専門家がいない程に確立した理論とされている。研究課題としては終わっていると考えられる。多くの数学も同様な経過を辿っている様を見ることができる。多くは物理学やいろいろな現象から新しい数学が生まれた例は多いが、ここは、素朴な数学の具体例、基本的な問題から、新しい数学が生まれ、発展して、やがて、細分化、孤立化した結果に至って 衰退している様を 数学の生態として捉えることができるだろう。社会との関係が薄く、興味を抱く人が少なくなれば、その数学は衰退すると ―すなわち 誰もやらなくなり、殆ど忘れされていくことになるだろう。この意味で、多くの数学も、花の命や人の一生のように 夢多き時期、華やいだ時期、衰退して行く時期といろいろな時期があると考えるのが妥当ではないだろうか。基本的で、新規な結果がどんどん展開されるときは、その数学の発展期で、活動期にあると考えられる.他方、他との関係が付かず、興味、関心を抱く者が少なくなれば、既に衰退期にあり、研究は労あって成果は小さいと言えよう。
数学を言わば輸入に頼っている国では、価値観も定かではなく、権威ある、あるいは数学の未解決問題の解明や小さな部分の形式的な拡張や精密化に力を入れている現実がある。見るだけでうんざりしてしまう論文は 世に多いと言える:
再生核研究所声明128 (2013.8.27): 数学の危機、 末期数学について
(特に純粋数学においては、考えられるものは何でも考える自由な精神で真理の追究を行なっているから(再生核研究所声明36:恋の原理と心得)、一旦方向が、課題が定まると、どんどん先に研究が進められる。基本的な精神は 内部における新しい概念と問題の発掘、拡張、すなわち一般化と精密化、そして他の数学との関係の追求などである。それらがどんどん進むと、理解出来る者、関心を抱く者がどんどん少なくなり、世界でも数人しか興味を抱く者がいないという状況になり、そのような状況は 今や珍しくはないと言える。 ― 興味以前に分からない、理解できないが 殆どであると言える。 また、何のための結果かと問われる結果が 現代数学の大部分を占めていると言えるだろう。特に数学内部の興味本位の結果は そのような状況に追い込まれ、数学の末期的状況の典型的な形相と言えるだろう。実際、相当なブームに成っていた数学の分野が、興味や関心を失い、世界でも興味を抱く者が殆どいなくなる分野は 結構実在する。それらの様は、さまざまな古代遺跡のように見えるだろう。― 夏草や兵どもが夢の跡(なつくさや つわものどもがゆめのあと):松尾芭蕉。
もちろん、数学は、時間によらないようであるから、オイラーの公式のように、基本的で美しく、いろいろ広く関係しているような結果は、普遍 (不変) 的な価値を 有すると言える。)
どの辺の数学に興味を抱くは、個人の好みであるが、最近考えられているゼロ除算は極めて初期の段階にあり、夢多き段階にあると見られので、広く世に状況を公表して、ゼロ除算の研究を推進したい。
ゼロ除算は、西暦628年インドでゼロが記録されて以来の発見で、全く未知の新しい数学、前人未到の新世界の発見である。すなわち、ゼロで割るは 不可能であるがゆえに 考えてはいけないとされてきたところ、ゼロで割ることができるとなったのであるから、全く未知の世界を探検できる。 既に数学的には確立され、物理的、幾何学的にも実証されている。 最近、素人にも分かるような例が結構発見されてきたので、 広く 世にそのような面白い新しい現象の発見を呼びかけたい。まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、関数y = 1/x のグラフは、原点で ゼロであると述べている。すなわち、 1/0=0 である。それらは 既に 数の実体である と言える。
― 要点は、上記直角双曲線は、原点で猛烈な不連続性を有し、爆発や衝突、コマで言えば、 中心の特異性などの現象を記述していることである。複素解析学では、1/0として、無限遠点が存在して、美しい世界であるが、無限遠点は 数値としては ゼロが対応する。
現在までに発見されたゼロ除算の実現例を簡単に列挙して置こう:
万有引力の法則で、2つの質点が一致すれば、引力はゼロである;一定の角速度で回転している回転体の中心で、角速度はゼロで、中心で不連続性を有している;光の輝度は 光源でゼロであること:円の中心の鏡像は 無限遠点ではなくて、中心そのものであるという強力な不連続性;電柱の微小な左右の揺れから、真っ直ぐに立った電柱の勾配はゼロであり、左右からマイナス無限とプラス無限の傾きの一致として、傾きゼロが存在している; 代数的には ゼロ除算z/0=0を含む簡単な体の構造が明らかにされ、数体系として自然な体系である複素数体より ゼロ除算z/0=0を含むY体 の方が自然であると考えられること; 点の曲率がゼロであること、などである。
さらに、原始的なテコの原理にもゼロ除算は明確に現れ、初等幾何学にも明確に現れ、例えば、半径Rの円をどんどん大きくすると,円の面積はいくらでも大きくなるが、半径が無限になると突然、その面積はゼロになることが認識された。 Rが無限になると円は直線になり、円は壊れて半空間になるからである。 このことの明確な意味が数学的に捉えられ、一般に図形が壊れる現象をゼロ除算は表していることが分かった。これらの現象は ゼロ除算が 普遍的に存在する現象を説明するもの と考えられる。
また、ゼロ除算において 無限遠点が 数値では ゼロで表されることは 驚嘆すべきことであり、それではuniverse は一体どうなっているのかと、真智への愛の 激しい情念が湧いてくるのではないだろうか。ゼロ除算は、数学ばかりではなく、物理学や世界観や文化にも大きな影響を与える:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算の最も関与している研究は まず 第1に複素解析学への影響、複素解析学の研究ではないだろうか。 実際、ゼロ除算は、ローラン展開そのものの見方から始まり、それは佐藤の超関数や特異積分などに関係している。
第2は、 ゼロ除算の物理学への影響である。 これは、ニュートンの万有引力の法則など多くの物理法則の公式に、ゼロ除算が現れているので、それらに対する新しい結果の解釈、影響である。
第3は ゼロ除算の代数的な、あるいは作用素論的な研究である。これらも始まったばかりであり、出版が確定している論文:
S.-E. Takahasi, M. Tsukada and Y.Kobayashi, Classification of continuous fractional binary operators on the realand complex fields, Tokyo Journal of Mathematics {\bf 8}(2015), no.2 (in press).
がそれらの最先端である。
これらの分野では、誰でも先頭に立てる全く新しい研究分野と言える。
全く、新しい研究分野となると、若い人がやみくもに挑戦するのは危険だと考えるのは、 よく理解できるが、ある程度自己の研究課題が確立していて、多少の余裕がみいだせる方は、新しい世界を自分の研究課題と比較しながら、ちょっと覗いてみるかは、面白いのではないだろうか。思わぬ関係が出てくるのが、数学の研究の楽しさであると言える面は多い。アメリカ新大陸に初めて移った人たちの想い、 ピッツバーグの地域に初めて移住した人たちの想いを想像してみたい。ゼロ除算は 新しい数学である。専門家はいないから、多くの人が面白い現象を発見できる機会があると考えられる。
次も参考:
再生核研究所声明189(2014.12.233) ゼロ除算の研究の勧め
再生核研究所声明222(2015.4.8) 日本の代表的な数学として ゼロ除算の研究の推進を求める
再生核研究所声明253(2015.10.28) 私も探そう ―ゼロ除算z/0=0 の現象
以 上
追記: ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
コペルニクスはまた、教会では司教座聖堂参事会員(カノン)であり、知事、長官、法学者、占星術師であり、医者でもあった。暫定的に領主司祭を務めたこともある。
1965年より発行されていた1000ズウォティ紙幣に彼の肖像が使用されていた。
目次 [非表示]
1 人物伝
2 『天体の回転について』とローマ教皇庁
3 ナチス政権下での国籍論争
4 主な業績
5 元素名
6 脚注
7 参考書
8 関連項目
9 外部リンク
人物伝[編集]
コペルニクスの生家
トルン旧市街広場
母方の叔父ルーカス
クラクフ大学コレギウム・マイウス(大カレッジ)
恩師のブルゼフスキ教授
ボローニャ大学
クラクフ大学コレギウム・マイウス(大カレッジ)のヤギェウォ教室
ここでコペルニクスが学んだ
フロムボルク大聖堂
(フロムボルク城内)
コペルニクスの塔
(フロムボルク城内)
司教座聖堂参事会員として赴任してきたコペルニクスの住居兼執務室
第二次大戦で破壊され、戦後に復元された
コペルニクスは、1473年にトルンで生まれた。生家は旧市街広場の一角にある。トルンは1772年のポーランド分割によってプロイセン王国領となり、現在はポーランドの一部に復帰している。ナチス時代にはドイツ人かポーランド人かで論争がおこなわれたが、現在ではドイツ系ポーランド人と思われている。ポーランド・リトアニア共和国は単一民族による国民国家ではなく、ポーランド王に従う多民族国家であったため、ポーランド人、リトアニア人、ドイツ人、チェコ人、スロバキア人、ユダヤ人、ウクライナ人、ベラルーシ人、ラトビア人、エストニア人、タタール人などが民族に関係なく暮らしており、ポーランドの市民権を持っている人は皆「ポーランド人」であった。王国内の共通言語はラテン語とポーランド語であり、クラクフ大学で大学教育を受けてもいることから、コペルニクスが日常生活に困らない程度のポーランド語を話すことができたことは推定されているが、本人がポーランド語で書いたものは現在発見されておらず、彼が実際に日常会話以上のポーランド語をどの程度使えたかは定かではない。
彼の姓の「コペルニクス」はラテン語表記の Copernicus を日本語で読み下したもので、ポーランド語では「コペルニク (Kopernik) 」となる。ポーランド語で「銅屋」の意味。すなわち彼は「銅屋のミコワイ(ニコラウス)」である。父方の一族のコペルニク家はポーランドのシレジア地方オポーレ県にある古い銅山の街コペルニキ (Koperniki) の出身。シレジア地方は13世紀のモンゴルによるポーランド侵攻で住民が避難して散り散りとなるか逃げ遅れて殺されるかして人口が大きく減少したため、ポーランドの当地の諸侯は復興のために西方から多くのドイツ人移民を招いている(ドイツ人の東方殖民)。そのなかでコペルニクスの父方の先祖(の少なくとも一部)もドイツの各地からやってきて、そのため一族がドイツ語を母語としていたものと推測される。
10歳の時、銅を商う裕福な商売人だった父親が亡くなり、母親のバルバラ・ヴァッツェンローデ (Barbara Watzenrode) は既に亡くなっていた。そのため、母方の叔父であるルーカス・ヴァッツェンローデ (Lucas Watzenrode) が父の死後、コペルニクスと兄弟を育てた。ルーカスは当時教会の律修司祭(カノン)であり、後にヴァルミア (Warmia) の領主司教となった。コペルニクスの兄弟アンドレーアス (Andreas) はポーランド王領プロイセンのフロムボルク(ドイツ語: フラウエンブルク Frauenburg)のカノンとなり、妹バルバラ (Barbara) はベネディクト修道院の修道女となった。他の妹カタリーナ (Katharina) は市の評議委員だったバルテル・ゲルトナー (Barthel Gertner) と結婚した。
1491年にコペルニクスはクラクフ大学に入学し、月の精密な軌道計算を史上はじめて行った著名な天文学者で従来より定説とされていた天動説に懐疑的な見解を持っていたアルベルト・ブルゼフスキ教授によってはじめて天文学に触れた。さらにニコラウスが化学に引き込まれていたことが、ウプサラの図書館に収蔵されている当時の彼の本からも窺うことができる。卒業後、叔父の計らいで聖堂の職につき生活の保障を得、4年と少しの間トルンにいたあと、1496年から1503年にかけて留学し、イタリアのボローニャ大学やパドヴァ大学で法律(ローマ法)について学び博士号を取得した。教育に援助をしていた叔父は彼が司祭になることを望んでいたが、カノンとローマ法について学んでいる間に、彼の恩師であり著名な天文学者であるドメーニコ・マリーア・ノヴァーラ・ダ・フェッラーラと出会い、その弟子となった。
やがてノヴァーラの影響により本格的に地動説に傾倒し、天動説では周転円により説明されていた天体の逆行運動を、地球との公転速度の差による見かけ上の物であると説明するなどの理論的裏付けを行っていった。ただしコペルニクスは惑星は完全な円軌道を描くと考えており、その点については従来の天動説と同様であり単にプトレマイオスの天動説よりも周転円の数を減らしたに過ぎない。実際には惑星は楕円軌道を描いていることは、ヨハネス・ケプラーにより発見された(もっとも天体が円運動を描いているという仮定により、天文学者は天体の逆行運動の説明を迫られたのであり、そういう思い込みが存在しなかったのならそもそも天体運動を探求する動機すら存在しなかったのであり、コペルニクスが円運動にこだわった限界はやむを得なかったとする評がある[1])。
1526年にはクラクフ大学時代のブルゼフスキ教授の天文学の講座の同窓の先輩で親友の地図学者ベルナルド・ヴァポフスキ (Bernard Wapowski) がポーランド王国とリトアニア大公国の版図全体の地図を作成した際、コペルニクスはその事業を手伝った[2]。多くの仕事をする一方、フロムボルクの聖堂付近の塔で天体の観測・研究を続け、新しい理論の創造に向かっていた。一方で1535年、「地球の動き方」に関するコペルニクスの重要な論文の出版に向けてはヴァポフスキは力を貸し、出版を請け負っていたウィーンの関係者へ手紙を書いて出版の催促をするなどしている。ヴァポフスキはこの手紙を出した2週間後に他界したため、論文の出版を見届けることはなかった。
コペルニクスの遺物
オルシュティンの聖ヤコブ大聖堂
自己の地動説の発表による影響を恐れたコペルニクスは、主著『天体の回転について』の販売を1543年に死期を迎えるまで許さなかった(彼自身は死去時に本が出版され、完成した書物を見ることなく逝ったと言われている)。シュチェチン大学などのチームが2004年から発掘を進め、大聖堂の深さ約2メートルの場所から2005年夏、遺骨を発見した。
この遺骨は肖像画と頭蓋骨が互いに非常に似ていて、時代と年齢もほぼ一致していたので、遺骨がコペルニクスのものである可能性が高まった。2008年11月、シュチェチン大学とスウェーデンのウプサラ大学との共同で、この遺骨と、他の場所で4世紀以上も保管されていたコペルニクスのものとされる毛髪とのDNA鑑定を行い、両者のDNAの一致によりこの遺骨がコペルニクスのものと最終的に認定された。
『天体の回転について』とローマ教皇庁[編集]
1616年、ガリレオ・ガリレイに対する裁判が始まる直前に、コペルニクスの著書『天体の回転について』は、ローマ教皇庁から閲覧一時停止の措置がとられた。これは、地球が動いているというその著書の内容が、『聖書』に反するとされたためである。(因みに「聖書」には天動説が載っているわけではなく「初めに、神は天地を創造された」という記述があるだけである。) ただし、禁書にはならず、純粋に数学的な仮定であるという注釈をつけ、数年後に再び閲覧が許可されるようになった。
アメリカ合衆国の科学関連のゴンゾー・ジャーナリズム雑誌OMNIの創設者の一人であるアマチュア科学研究者ディック・テレシによると、このアイデアはアラビア自然学からの剽窃であり、また近代社会における西欧の興隆にともない、西洋中心主義および白人中心主義史観によって、非西欧文明圏の影響を故意に見落としてきたことがあるとしている[3]。
ナチス政権下での国籍論争[編集]
ヤン・マテイコによるコペルニクスの肖像『コペルニクス: 神との対話』
ドイツでナチスが勢力を誇っていた時代は、彼がポーランド人かドイツ人かが大きな論争の的となった(コペルニクスの国籍論争)が、現在は「多民族国家ポーランド王国の国民(すなわち国籍はポーランド人)であり、クラクフの大学を出るなどポーランドの教育を受けた、この地方のドイツ語の方言を母語とする家系(民族はドイツ人)出身の人物」、すなわち「ドイツ系ポーランド人」ということで落ち着いている。
主な業績[編集]
1510年頃 「コメンタリオルス」(Comentariolus、同人誌)
太陽中心説(地動説)をはじめて公にした。
1528年 『貨幣鋳造の方法』(Monetae Cudendae Ratio)
経済学でいうグレシャムの法則を提唱した。
1543年 『天体の回転について』[4][5](De Revolutionibus Orbium Coelestium)
コペルニクスの主著。地動説を元に、実際に星の軌道計算を行った。
元素名[編集]
超アクチノイド元素のひとつ、原子番号112の元素はコペルニクスにちなんで "copernicium"(コペルニシウム)と命名された。この新元素名 "copercinium" は2009年に発見者であるドイツの重イオン研究所 (GSI) により提案された。その後 2010年の2月19日、コペルニクスの誕生日に合わせて IUPAC(国際純正・応用化学連合)から正式名として発表された[6]。その発表文の中では、コペルニクスが考えた太陽系のモデルが、ニールス・ボーアによる原子モデルに通じると述べられている。https://ja.wikipedia.org/wiki/%E3%83%8B%E3%82%B3%E3%83%A9%E3%82%A6%E3%82%B9%E3%83%BB%E3%82%B3%E3%83%9A%E3%83%AB%E3%83%8B%E3%82%AF%E3%82%B9
再生核研究所声明 264 (2015.12.23): 永遠とは何か ― 永遠から
現代人は 空間とは 座標軸で表される数の組の集合 で表させるものと発想しているだろう。 基礎である直線は 実数を直線上に並べたもの、逆に直線とは 実は 実数全体の表現と考えられる。 すなわち、直線とは 基準点である原点ゼロから、正方向と負方向に正の実数と負の実数が大小関係で順序づけられ無限に双方向に伸びていると考えられる。
そこで、永遠とは 直線に時間を対応させ、限りなく正方向に進んだ先のことを 想像している。どこまでも どこまでも 先に行けばどうなるだろうか。直線上でも、平面上でも である。 砂漠の伝統を有する欧米文化の背景、キリスト教などの背後には、 永遠とは限りなく 果てしなく先にあると発想しているという。 どこまでも、どこまでも きりのない世界である。 ユークリッド幾何学が そのような空間を考えていることは確かである。
ところが四季に恵まれたアジアの民は、限りなく広がる世界に、不安や淋しさを直感して、 正の先と、負の先が一致していて、直線は円で どこまでも どこまでも行くと反対方向から、現在に至り、永遠は繰り返しであると、四季の繰り返し、天空の繰り返し、円運動のように発想して 仄かな安心感を覚えているという。永劫回帰、輪廻の思想を深く懐いている。実に面白いことには 美しい複素解析学では、立体射影の考えによって、直線を球面上の円と表現し、無限遠点の導入によって、 これらの思想を 数学的に厳格に実現させ、全ユークリッド平面の全貌を捉え、無限の彼方さえ捉えることが出来た。 その時 永遠を 確かに捉え、掴むことさえ出来たと言える。立体射影による球面上の北極に 確かに存在すると言える。素晴しい、数学を手に入れていた。この美しい数学は 100年以上もリーマン球面として、複素解析学の基本となってきている。
ところが2014.2.2偶然に発見されたゼロ除算の結果は、この無限遠点が 実は原点に一致していた という衝撃的な事実を述べていた。 永遠、無限の彼方と想像していたら、それが 実は原点に戻っていたという事実である。 それが我々の数学であり、ユークリッド空間の実相である。幾何学の性質や物理的な法則をきちんと説明している、我々の世界の数学である。
それで、永遠や無限遠点、我々の空間の 十分先の考え方、発想を考える必要がある。
無限の先が原点に一致している事実、それを如何に理解すべきであろうか。
それについて、 次のように解説してきた:
再生核研究所声明232(2015.5.26)無限大とは何か、無限遠点とは何か。― 驚嘆すべきゼロ除算の結果
再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観
新しい世界観は 始まりから始まり 最後には 突然戻るということを述べている。 しからば、始めとは何で 終りとは何だろうか。 これについて、 始めも終わりも、質的な変化であると定義できるのではないだろうか。 簡単な数学で万物、universe の現象を説明するのは難しい状況は確かにあるだろう.しかし、ゼロ除算の思想は、新羅万象が絶えず変化して 繰り返している様を表現しているように感じられる。
大事な人生の視点は 今日は 明日のためや遠い未来のためにあるのではなく、 現在、現在における在るべき適切な在りようが大事だと言っているようである。もちろん、現在は、未来と過去に関係する存在であり、それらは関係付けられ、繋がっているが 焦点はもちろん、 現在にあるということである。
ビッグバンの宇宙論は 適切に理解され、始めとは 大きな変化で 現状の元が始まり、
やがて突然、元に戻って 終わることを暗示しているようである。人生とは 要するに 内なる自分と環境に調和するように在れ と ゼロ除算は言っているようである。
ゼロ除算は 仏教の偉大なる思想 を暗示させているように感じられる。
以 上
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観
最近展開しているゼロ除算が、新しい世界観を示しているのは 大変興味深い。直線とは一体どうなっているだろうか.空間とはどのようになっているだろうか。これについて、現代人は、双方向にどこまでも どこまでも 続いている直線を想像するであろう。限りなく広がった平面や空間である。ところが 立体射影によって 平面全体を球面上に1対1に写せば、全平面は 球面から北極を除いた球面上に1対1にきちんと写るから、無限に広がる 全平面の全貌が捉えられる。ところが平面上には存在しない想像上の点 それはあらゆる方向に限りなく遠くに存在する無限遠点の導入によって、その点を球面の欠けた1点北極に対応させれば、無限遠点を含めた平面全体は 球面全体と1対1にきちんと対応する。
このような対応で 平面上の円や直線全体は 球面上では共に円に対応するという美しい対応になり、平面上の直線は 球面上では、北極(無限遠点)を通る円に写ると、直線と円の区別は 球面上では不要になる。また、平面上の平行線とは 無限遠点で 角度ゼロで交わっている(接している)と平面上の構造がよく見えて、無限遠点を含めての平面の全構造が 捉えられる。このように、考えると、直線とは、球面上では北極を通る円、平面上では無限遠点を通る直線となる。この構造は、直線を1方向にどこまでも, どこまでも進めば、無限遠点を 通って、逆方向から戻ってくるという、永劫回帰の思想をちょうど実現している。それは、球面上では、 円を繰り返し回ることを意味する。 その様は 何もかも すっかり良く見える。
これが、従来100年以上も続いた世界観で、関数y=x やW=zは 無限遠点に近づけば、それらの像も無限遠点に近づいていると考えるだろう。 関数y=x の値は正方向にどんどん行けば、どんどん大きくなると考えるだろう。
しかるに、ゼロ除算1/0=0は、それらの関数は無限遠点にいくらでも近づくと 無限遠点にいくらでも近づくが、無限遠点自身では、突然ゼロになっていることが 幾何学的にも確認された。上記、北極は 実は原点ゼロに一致しているという。
話しを簡単にするために、 関数y=x を考えよう。右に行けば、プラス無限に、負の方向左に行けば 負の無限に限りなく近づくは 従来通りである。ところが、ゼロ除算では いずれの方向でも上記無限遠点では 値ゼロをきちんと取っているという。ゼロ除算の数学では、どんどん、増加した先、突然、ゼロ、原点に戻っているという。また、円でも球面でも半径Rをどんどん大きくすると、当然、円の面積や球の体積はどんどん限りなく大きくなるが、半径が無限のとき、突然、それらはゼロになるという。それらの理由も数学ばかりではなく、幾何学的にも明確に見えている。
この数学的な事実は、我々の世界、宇宙がどんどん拡大して行くと突然、ゼロに帰するということを暗示させている。 ― これは 宇宙回帰説を意味しているようである。
これは、ユニバースの普遍的な現象、どんどん進んだ先が、元に突然戻る原理を示しているようである。
そもそも人生とは如何なるものか。― よくは分からないが、事実として、生まれて、どんどん物心がついて、人間として精神活動が活発化して、多くは本能原理によって生かされて、そして、突然元に戻ることを意味しているようである。このことを深く捉えられれば、世界がよりよく観え、悟りの境地に達する大きなヒントを得ることができるだろう。
ここでは ゼロ除算の帰結として、宇宙回帰説、ユニバースの回帰説を唱えたい。この考えでは、どんどん進めば、突然元に戻るという原理を述べている。珠算における 御破算で願いましては で 再び始めることを想起させる。これは、また、reset と同様であると考えられる。
以 上
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
再生核研究所声明259 (2015.12.04) 数学の生態、旬の数学 ―ゼロ除算の勧め
数学とは何だろうかと問うてきたが(No.81, May 2012(pdf 432kb) www.jams.or.jp/kaiho/kaiho-81.pdf)違う観点から、はじめに数学の生態について外観して、ゼロ除算の研究の勧めを提案したい。
純粋数学の理論は 恰も人間とは無関係に存在して、まるで神の言語のように感じられるが、しかしながら、生活している人間、関与している人間、またそれらを支えている社会が数学の発展の行くすえ、成長の生態に反映されているのは事実である。実際、最も古く、超古典のユークリッド幾何学の発展、現状を見れば、数学の生態の様を見ることができる。その幾何学は 素朴に土地を測るという、現実の要求から生まれ、知的要求で言わば社会との関わりを有しないレベルまで発展して、膨大な理論体系が作られたが、現在では研究の専門家がいない程に確立した理論とされている。研究課題としては終わっていると考えられる。多くの数学も同様な経過を辿っている様を見ることができる。多くは物理学やいろいろな現象から新しい数学が生まれた例は多いが、ここは、素朴な数学の具体例、基本的な問題から、新しい数学が生まれ、発展して、やがて、細分化、孤立化した結果に至って 衰退している様を 数学の生態として捉えることができるだろう。社会との関係が薄く、興味を抱く人が少なくなれば、その数学は衰退すると ―すなわち 誰もやらなくなり、殆ど忘れされていくことになるだろう。この意味で、多くの数学も、花の命や人の一生のように 夢多き時期、華やいだ時期、衰退して行く時期といろいろな時期があると考えるのが妥当ではないだろうか。基本的で、新規な結果がどんどん展開されるときは、その数学の発展期で、活動期にあると考えられる.他方、他との関係が付かず、興味、関心を抱く者が少なくなれば、既に衰退期にあり、研究は労あって成果は小さいと言えよう。
数学を言わば輸入に頼っている国では、価値観も定かではなく、権威ある、あるいは数学の未解決問題の解明や小さな部分の形式的な拡張や精密化に力を入れている現実がある。見るだけでうんざりしてしまう論文は 世に多いと言える:
再生核研究所声明128 (2013.8.27): 数学の危機、 末期数学について
(特に純粋数学においては、考えられるものは何でも考える自由な精神で真理の追究を行なっているから(再生核研究所声明36:恋の原理と心得)、一旦方向が、課題が定まると、どんどん先に研究が進められる。基本的な精神は 内部における新しい概念と問題の発掘、拡張、すなわち一般化と精密化、そして他の数学との関係の追求などである。それらがどんどん進むと、理解出来る者、関心を抱く者がどんどん少なくなり、世界でも数人しか興味を抱く者がいないという状況になり、そのような状況は 今や珍しくはないと言える。 ― 興味以前に分からない、理解できないが 殆どであると言える。 また、何のための結果かと問われる結果が 現代数学の大部分を占めていると言えるだろう。特に数学内部の興味本位の結果は そのような状況に追い込まれ、数学の末期的状況の典型的な形相と言えるだろう。実際、相当なブームに成っていた数学の分野が、興味や関心を失い、世界でも興味を抱く者が殆どいなくなる分野は 結構実在する。それらの様は、さまざまな古代遺跡のように見えるだろう。― 夏草や兵どもが夢の跡(なつくさや つわものどもがゆめのあと):松尾芭蕉。
もちろん、数学は、時間によらないようであるから、オイラーの公式のように、基本的で美しく、いろいろ広く関係しているような結果は、普遍 (不変) 的な価値を 有すると言える。)
どの辺の数学に興味を抱くは、個人の好みであるが、最近考えられているゼロ除算は極めて初期の段階にあり、夢多き段階にあると見られので、広く世に状況を公表して、ゼロ除算の研究を推進したい。
ゼロ除算は、西暦628年インドでゼロが記録されて以来の発見で、全く未知の新しい数学、前人未到の新世界の発見である。すなわち、ゼロで割るは 不可能であるがゆえに 考えてはいけないとされてきたところ、ゼロで割ることができるとなったのであるから、全く未知の世界を探検できる。 既に数学的には確立され、物理的、幾何学的にも実証されている。 最近、素人にも分かるような例が結構発見されてきたので、 広く 世にそのような面白い新しい現象の発見を呼びかけたい。まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、関数y = 1/x のグラフは、原点で ゼロであると述べている。すなわち、 1/0=0 である。それらは 既に 数の実体である と言える。
― 要点は、上記直角双曲線は、原点で猛烈な不連続性を有し、爆発や衝突、コマで言えば、 中心の特異性などの現象を記述していることである。複素解析学では、1/0として、無限遠点が存在して、美しい世界であるが、無限遠点は 数値としては ゼロが対応する。
現在までに発見されたゼロ除算の実現例を簡単に列挙して置こう:
万有引力の法則で、2つの質点が一致すれば、引力はゼロである;一定の角速度で回転している回転体の中心で、角速度はゼロで、中心で不連続性を有している;光の輝度は 光源でゼロであること:円の中心の鏡像は 無限遠点ではなくて、中心そのものであるという強力な不連続性;電柱の微小な左右の揺れから、真っ直ぐに立った電柱の勾配はゼロであり、左右からマイナス無限とプラス無限の傾きの一致として、傾きゼロが存在している; 代数的には ゼロ除算z/0=0を含む簡単な体の構造が明らかにされ、数体系として自然な体系である複素数体より ゼロ除算z/0=0を含むY体 の方が自然であると考えられること; 点の曲率がゼロであること、などである。
さらに、原始的なテコの原理にもゼロ除算は明確に現れ、初等幾何学にも明確に現れ、例えば、半径Rの円をどんどん大きくすると,円の面積はいくらでも大きくなるが、半径が無限になると突然、その面積はゼロになることが認識された。 Rが無限になると円は直線になり、円は壊れて半空間になるからである。 このことの明確な意味が数学的に捉えられ、一般に図形が壊れる現象をゼロ除算は表していることが分かった。これらの現象は ゼロ除算が 普遍的に存在する現象を説明するもの と考えられる。
また、ゼロ除算において 無限遠点が 数値では ゼロで表されることは 驚嘆すべきことであり、それではuniverse は一体どうなっているのかと、真智への愛の 激しい情念が湧いてくるのではないだろうか。ゼロ除算は、数学ばかりではなく、物理学や世界観や文化にも大きな影響を与える:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算の最も関与している研究は まず 第1に複素解析学への影響、複素解析学の研究ではないだろうか。 実際、ゼロ除算は、ローラン展開そのものの見方から始まり、それは佐藤の超関数や特異積分などに関係している。
第2は、 ゼロ除算の物理学への影響である。 これは、ニュートンの万有引力の法則など多くの物理法則の公式に、ゼロ除算が現れているので、それらに対する新しい結果の解釈、影響である。
第3は ゼロ除算の代数的な、あるいは作用素論的な研究である。これらも始まったばかりであり、出版が確定している論文:
S.-E. Takahasi, M. Tsukada and Y.Kobayashi, Classification of continuous fractional binary operators on the realand complex fields, Tokyo Journal of Mathematics {\bf 8}(2015), no.2 (in press).
がそれらの最先端である。
これらの分野では、誰でも先頭に立てる全く新しい研究分野と言える。
全く、新しい研究分野となると、若い人がやみくもに挑戦するのは危険だと考えるのは、 よく理解できるが、ある程度自己の研究課題が確立していて、多少の余裕がみいだせる方は、新しい世界を自分の研究課題と比較しながら、ちょっと覗いてみるかは、面白いのではないだろうか。思わぬ関係が出てくるのが、数学の研究の楽しさであると言える面は多い。アメリカ新大陸に初めて移った人たちの想い、 ピッツバーグの地域に初めて移住した人たちの想いを想像してみたい。ゼロ除算は 新しい数学である。専門家はいないから、多くの人が面白い現象を発見できる機会があると考えられる。
次も参考:
再生核研究所声明189(2014.12.233) ゼロ除算の研究の勧め
再生核研究所声明222(2015.4.8) 日本の代表的な数学として ゼロ除算の研究の推進を求める
再生核研究所声明253(2015.10.28) 私も探そう ―ゼロ除算z/0=0 の現象
以 上
追記: ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
AD
0 件のコメント:
コメントを投稿