定理をいきなり思いつくってホント? - 「数学者」に話を聞いてみた
1 中学時代はむしろ数学が苦手だった
周藤瞳美 [2015/12/25]
1/2
「数学者」と聞くと、オイラーやガウス、ラマヌジャンといった歴史上の天才数学者たちが頭に思い浮かび、「数学者たちの頭の中って、いったいどうなってるんだろう?」と、つい考えてしまう。凸幾何学およびポテンシャル論を専門とする数学者である宮崎大学 教育文化学部(2016年4月から教育学部に改組予定) 数学教育講座の坂田繁洋 講師にお話をうかがい、その実態に迫った。
宮崎大学 教育文化学部(2016年4月から教育学部に改組予定) 数学教育講座 坂田繁洋 講師
「数学者」を志したきっかけ
―「数学者」と聞くと、小さいころからすでに数学がものすごく得意だったのではというイメージがあります。中高時代、数学は好きでしたか?
私はむしろ、中学1~2年生のころは苦手なほうでした。文章題が解けなかったんです。数学にハマったのは、それまで通っていた塾を変えて、新しい先生に教えてもらうようになってからですね。特に、三平方の定理がおもしろいと感じました。補助線の引き方を1本見つけられると一気に問題が解けるというところが、ある種のゲーム感覚というか。
―大学では「数学科」で学ばれていたそうですが、多くの学科のなかから数学科に進学しようと思った理由を教えてください。
もともと学校の先生になりたかったので、高校2年の文理選択の際には、教育学部に行くために文系に進もうと思っていたんです。そうしたら先生たちに「お前はどう考えても理系だろう」と言われてしまい(笑)、理学部や工学部でも教員免許が取れるとのことなので、理系に進みました。さらに、数学科に在籍しているという予備校のティーチングアシスタントの先生から、数学科では数学をたくさん勉強できるうえに、教員免許も取れるという話を聞いて「こんなにおいしい話はない!」と、数学科への進学を決意しました。
―教員志望だった坂田先生が研究者の道へ進もうと思ったのは、いつ、どうしてですか?
高校3年生のとき、予備校の先生から「πとeはそれぞれ無理数だけど、これらを足した“π+e”が有理数なのか無理数なのかということはいまだにわかっていない※。この問題を解けたら世界中に名前が知られることになる」と教わった際に、「こんなに素朴な問題がまだ残っていて、これを解くだけで賞賛されるなんて、数学の研究はすごい」と感じました。それと同時に、このまま学校の先生になったら高校数学までの世界のなかで考えなければならないと思い、とても窮屈な気持ちになりました。大学で数学を勉強して学者になれば、いくらでも新しいことを発見し続けられるというところに可能性を感じて、そのころから大学院の博士課程に進むことを考えるようになりました。
※1+πと1-πはともに無理数だが、(1+π)+(1-π)=2は有理数。無理数+無理数は無理数とは限らない。
高校数学と大学数学の壁
―高校数学と大学数学はまったく違うものだ、という話を聞いたことがあります。坂田先生は高校と大学の「壁」を感じることはありましたか?
はい、大学1年生のゴールデンウイーク前にさっそくその壁にぶち当たりました。そもそも、大学生は授業に出なくてよいものだというイメージを抱いていたので(笑)、授業が始まったばかりのころはサボっていました。授業が本格化したころを見計らって出席しはじめたのですが、すでにちんぷんかんぷんでした。講義形式と演習形式の授業がありましたが、どちらも大学受験のときとは全然別の感覚で、巻き返しを図ろうと思ってもまったく身に付いてこないんです。課された演習問題に2日~3日かけても解けないことは日常茶飯事でした。そこで先生のところに「3日考えたのに解けなかったのでヒントをください」と相談に行ったのですが、「3日で解けないなら、3カ月あれば解けるんじゃない? 大学の数学とはそういうものだよ」と言われてしまった。高校までは限られた時間のなかで問題を解くという"処理能力"を問われていたけれど、大学は学問をやる場所なのでしっかり理解しなければならないということに気づきました。
それからは、講義ノートを読み返したり、問題を解いたりと、休日はカフェや図書館にこもって1日10時間くらい勉強しましたね。こうして大学1年生前期の段階で一生懸命勉強したことで、数学に対する心構えと習慣が身に付きました。
―数学に対する心構えと習慣とは、具体的にどういったものでしょうか?
高校数学の場合、ひとつの問題に対して、5分~10分考えてわからなかったら解答をみて解法を覚えるというような勉強の仕方があると思います。私はそうでした。そうではなく、5分~10分考えてダメならいったん心を落ち着けてもう一度問題文を読んでみようとか、それでもダメなら明日またチャレンジしよう、といったように、気長にひとつの問題について考えることでしょうか。
ちなみに「3カ月あれば解けるんじゃない?」と先生に言われた問題は、その後1週間ほど考えたら解けました。やはり、高校までの習慣がよくなかったと思います。数十分の制限時間内に問題を解くことが求められる高校数学では、少し計算が込み入ってくると自分の方針が不安になってきて、そこで手を止めてしまう。しかし、この問題では、面倒な計算でも、気長に計算して押し切ったら解けるのではないかと考えました。演習形式の授業のなかで、黒板の端から端まで使って説明することになりましたが、私の考えた解答で合っていました。
三角形の公園をいちばん明るく照らすには?
―学部生のころにそうして数学の基礎知識を身につけていった後は、誰も解いたことのない問題、いわゆる論文になるような問題に挑むことになると思うのですが、それはいつごろでしたか?
修士1年のときです。セミナーで、指導教官が仕入れてきた問題を後輩に紹介していたのですが、それを自分でも考えてみたんです。後輩は解く気がなかったし、先生も問題を出したことを忘れていたのですが(笑)、試行錯誤の跡を先生に見せた際に、これを修士論文のテーマにしようということになりました。
―それはどういった問題だったのでしょうか?
文部科学省の学習到達度調査(PISA)にあったものなのですが、三角形の公園に街灯を一本立てる際、どこに街灯を立てるのがよいかという問題です。PISAの解答は、「外心(外接円の中心)」だったのですが、それでは納得できず、公園をいちばん明るく照らす「灯心」という新しい中心を考えた研究者がいました。
三角形の「外心」
私は、三角形だけでなく、ほかの図形の場合も考えることにしました。数学者はまず、そもそも「灯心」というものはいつでも存在するのかどうかということを考えます。これは早々に解けたのですが、修士論文のメインの結果とするには弱かった。そこで「灯心」が存在する場合、果たしてそれはひとつだけだろうかということを考えました。灯心を2個以上もつ公園が存在することはわかっていたので、この考察には意味があります。その結果、公園が線対称でかつへこみがない(凸領域)ならば、灯心は公園の対称軸上にひとつだけ存在するということがわかりました。
―修士論文のテーマは指導教官のアイディアがベースになっていると思うのですが、数学の研究では一般的に、どのようにして研究テーマを見つけるのでしょう。
博士課程では、修士論文で用いた計算手法のアイディアを、ほかの"由緒正しい"数学の問題に流用できないか考えてみることにしました。大学1年生のときに使っていた微分積分学の教科書をなんとなく眺めていたときに、熱方程式の解が、修士論文で研究した関数に似ていることに気づいたのです。「これで由緒正しい偏微分方程式に新しいことが見出せた!」と思ったのですが、20年前にすでに同じことを考えていた研究者がいました。そこで私は、公園の問題と熱の問題が両方とも一度にわかる、普遍的な枠組みを作ろうと思ったのです。これが博士論文のテーマとなりました。しかし、これでもまだ人のやっていることの真似ごとをやっているような気がして、何か新しいブレイクスルーがほしいと悩んでいるところではあります。http://news.mynavi.jp/articles/2015/12/25/mathematician/
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
100割る0 の意味を質問されたが(なぜ 100÷0は100ではないのか? なぜ 100÷1は100なのか… 0とは何...aitaitokidakenimoさん)、これは、定義によれば、その解、答えが有るとして、a と仮に置けば、 100=a x0 = 0 で矛盾、すなわち、解は、答えは存在しないとなる。
方程式 a x0= b は b=0 でなければ 解は無く、答えが求まらない。(特に、bが0ならば、解 a は 何でも良いと言うことに成る。)
解が、存在しなかったり、沢山の解が有ったりすると言う、状況である。
そこで、何時でも解が存在するように、しかも唯一つに定まるように、さらに 従来成り立っていた結果が そのまま成り立つように(形式不変の原理)、割り算の考えを拡張できないかと考えるのは、数学では よくやることである。数学の世界を 美しくしたいからである。
実際、文献の論文で 任意関数で割る概念を導入している。
現在の状況では、b 割るa の意味を ax – b の2乗を最小にする x で、しかも x の2乗を最小にする数 x で定義する。後半の部分が無いと、a が0の場合 x が定まらない。後半が有ると0として、唯一つに定まる。この意味で割り算の意味を考えれば、100割る0は 0 であるとなる。
上記で もちろん、2乗を最小にする の最小値が0である場合が、 普通の割り算の解、
b 割るa を与える。
もちろん、我々の意味で、0割る0は 曖昧なく、解は唯一つに定まって、0となる。
f 割る g を ロシアの著名な数学者 チコノフの考えた正則化法 と 再生核の理論 を併用すると 一般的な割り算を 任意関数g で定義できて、上記の場合は、100割る0は 0 という解に成る。
すなわち、解が存在しなかった場合に、割り算の意味を 自然に拡張すると 唯一つに解は存在して それは0であると言う、結果である。
上記で、ax – b の2乗を最小にする x で、と考えるのは、近似の考え方から、極めて自然と考えられるが、さらに、x の2乗を最小にする数 x とは、神は、最も簡単なものを選択する、これはエネルギー最小のもの、できれば横着したい という 世に普遍的に存在する 神の意志 が現れていると考えられる(光は、最短時間で到達するような経路で進むという ― フェルマーの原理)、神が2を愛している、好きだ とは 繰り返し述べてきた(神は 2を愛し給う)(http://www.jams.or.jp/kaiho/kaiho-81.pdf)。
これで、0で割るときの心配が無くなった。この考えの 実のある展開と応用は多い。
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
以 上
文献:
Castro, L.P.; Saitoh, S. Fractional functions and their representations. Complex Anal. Oper. Theory 7, No. 4, 1049-1063 (2013).
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では
無限遠点はどこにあるのでしょうか・・・・・
無限遠点は存在するが、無限大という数は存在しない・・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
割り算を掛け算の逆だと定義した人は、誰でしょう???
0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。
multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
アラビア数字の伝来と洋算 - tcp-ip
明治5年(1872)
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
(本当に面白い、中国茶。研究室に来る途中、 ちょうど、2014.5.5.8:00です。考えがひとりでにわきました。知りたい神の意志です。例の数学ですね。 どうして、無限遠点とゼロ点が 一致しているかです。作文が出来そうです。)
ゼロで割ることの一般化について、発見して3か月目に
100/0=0,0/0=0 誕生日(2014.2.2) 3か月:
足し算、引き算、掛け算は 何時もできる。 割り算はゼロで割ることが出来なかった。ゼロで割ればゼロになる、良い、自然な解釈を発見して、ちょうど3か月になる。ゼロで割る数学は 爆発、衝突などの特異現象を記述しているが、複素解析学では、従来の、無限遠点に対して、ゼロを対応させるべきとして、とんでもない現象を示している。
と記述し、詳しい経過
再生核研究所声明148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
や その後の経過、内容についても纏めている:
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
5日朝 ひとりでにわいた、新鮮な想いをできるだけ多くの人に、その奇妙な現象を表現して、世界の理解を深めたい。― 神も 世界も かすかにしか、感じられない - しかしながら ― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
述語やグラフに馴染みの薄い方は、下記注でインターネットなどで確認、 補充して下さい。要するに、 直角双曲線y=1/xのグラフも 立体射影における北極(無限遠点) も ゼロで割る考えの自然な一般化は 原点でゼロ、1/0=0, z/0=0 と 数学はなっている。十分な一般化でも、それ以外には考えられないとなっている。ところが、1変数複素解析学を実現させる立体射影では、複素数の世界では、1/0は 無限遠点として、球の北極を考えるのが世界の常識で、複素解析学の教科書、学術書は全て、現在そうなっている。そこで、発見された新しい概念に基づいて、そこに問題を提起し、無限遠点、無限は数ではないのではないか、おかしいのではないか と述べている。 他方、1/0=0 は割り算の概念を越えて、関数y=1/xとW=1/zが それぞれ、実数全体や複素数全体を 1対1に ちょうど対応させるなど 極めて自然な性質を有する。
しかしながら、ここで、極めて、面白い現象が起きている。 双曲線でも、球でも、原点の近くで、無限の彼方にとんでいるのに、原点で、突然ゼロに戻っているという、驚嘆すべき現象である。この驚嘆すべき不連続性のために、ゼロで割る新しい考えは受け入れられないと 人は思うだろうか?
逆に、その特異性こそ、ゼロで割ることの本質、要点であり、神の意志、思わせぶりが出ていると考えるべきか?
ビッグバン現象、接触現象、生と死の一致、永劫回帰の思想、ユニバースは 一体どうなっているのか (神の意志) と、そのからくり、 どうなっているのか しきりに 切に 知りたい。
天動説が地動説に変わったように、何時か、この強烈な不連続性を、ユニバースの常識と捉える時代が来るだろうか。それとも 神の気まぐれに 終わるだろうか。
注:
1. 直角双曲線
www.sist.ac.jp/.../chokkaku_sokyokusen.html
Traduzir esta página
反比例の関係を表すxy=k(k≠0)のような関係をx軸y軸平面に描くと、図のような直角双曲線となる。 kの値によって違う線となるが、いずれもx=0(y軸)とy=0(x軸)に限り ...
ステレオ投影:ウィキペディアより
http://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%86%E3%83%AC%E3%82%AA%E6%8A%95%E5%BD%B1
数学的な定義
単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory.(in press).
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
(2014.7.11小柴誠一、山根正巳氏との会合で、道脇裕氏の 割り算と掛け算は別であり、ゼロ除算100/0=0は自明であるとの考えを分析して得た考えを纏めたものである。)
ゼロ除算100/0=0は2014.2.2 偶然に論文出筆中に 原稿の中で発見したものである。チコノフ正則化法の応用として、自然に分数、割り算を拡張して得られたものであるが、歴史上不可能であるとされていること、結果がゼロであると言う意味で、驚嘆すべきことであること、さらに、高校生から小学生にも分る内容であると言う意味で、極めて面白い歴史的な事件と言える。そればかりか、物理学など世界の理解に大きな影響を与えることも注目される。詳しい経過などは 一連の声明を参照:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
しかるに いろいろな人たちと広く議論しているところであるが、世界の指導的な数学者でさえ、高校生でも理解できる発表済みの論文 その後の結果について、現代数学の常識を変えるものであり、受け入れられない、と言ってきている。まことに不思議なことであり、如何に驚くべき結果であるかを示していると言える。
多くの数学者は、内容を理解せず、100/0=0 は100=0 x 0 =0 で矛盾であると即断している。しかるに論文は 100/0 は 割り算の意味を自然に拡張するとゼロの結果を得るのであって、ゼロ除算の結果は 100=0 x 0 =0を意味しないと説明している。 逆に、無限大、無限遠点は数と言えるかと問うている。
ところが面白いことに 既に3月18日付文書で、道脇裕氏は 掛け算と割り算は別であり、ゼロ除算100/0は 自明であると述べていた。しかし、その文書は、一見すると
矛盾や間違いに満ちていたので、詳しく分析してこなかった。しかるに上記7月11日の会合で、詳しい状況を聞いて、道脇氏の文書を解読して、始めて道脇氏の偉大な考えに気づいた。結論は、ゼロ除算100/0は分数、割り算の固有の意味から、自明であると言うことである。これはチコノフ正則化法や一般逆とは関係なく、分数、割り算の意味から、自明であるというのであるから、驚嘆すべき結果である。千年を越えて、未明であった真実を明らかにした意味で、極めて面白い知見である。またそれは、割り算が掛け算の逆であり、ゼロ除算は不可能であるという長い囚われた考えから、解放した考えであると評価できる。
原理は日本語の表現にあるという、掛け算は 足し算で定義され、割り算は 引き算で定義されるという。割り算を考えるのに 掛け算の考えは不要であるという。
実際、2 x3 は 2+2+2=6と繰り返して加法を用いて計算され、定義もできる。
割り算は、問題になっているので、少し詳しく触れよう。
声明は一般向きであるから、本質を分かり易く説明しよう。 そのため、ゼロ以上の数の世界で考え、まず、100/2を次のように考えよう:
100-2-2-2-,...,-2.
ここで、2 を何回引けるかと考え、いまは 50 回引いてゼロになるから分数は50であると考える。100を2つに分ければ50である。
次に 3/2 を考えよう。まず、
3 - 2 = 1
で、余り1である。そこで、余り1を10倍して、 同様に
10-2-2-2-2-2=0
であるから、10/2=5 となり
3/2 =1+0.5= 1.5
とする。3を2つに分ければ、1.5である。
これは筆算で割り算を行うことを 減法の繰り返しで考える方法を示している。a がゼロでなければ、分数b/aは 現代数学の定義と同じに定義される。
そこで、100/0 を上記の精神で考えてみよう。 まず、
100 - 0 = 100,
であるが、0を引いても 100は減少しないから、何も引いたことにはならず、引いた回数は、ゼロと解釈するのが自然ではないだろうか (ここはもちろん数学的に厳格に そう定義できる)。ゼロで割るとは、100を分けないこと、よって、分けられた数もない、ゼロであると考えられる。 この意味で、分数を定義すれば、分数の意味で、
100割るゼロはゼロ、すなわち、100/0=0である。(ここに、絶妙に面白い状況がある、0をどんどん引いても変わらないから、無限回引けると解釈すると、無限とも解釈でき、ゼロ除算は 0と無限の不思議な関係を長く尾を引いている。)
同様に0割る0は ゼロであること0/0=0が簡単に分かる。
上記が千年以上も掛かったゼロ除算の解明であり、 ニュートンやアインシュタインを悩ましてきたゼロ除算の簡単な解決であると 世の人は、受けいれられるであろうか?
いずれにしても、ゼロ除算z/0=0は 既に数学的に確定している と考えられる。そこで、結果の 世への影響 に関心が移っている。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明148で 結構詳しい状況について説明し、特異点解明:100/0 =0,0/0=0 として 詳しい状況はブログなどでも公開、関係文書は保管されている。2月2日考えを抱いた日としているので、まだ、3か月足らずである。
簡潔に回想して、問題点と今後について、考察し、今後を構想したい。
まず、あまりにも基本的な問題で、全く予期しない それこそ驚嘆すべき結果なので、茫然としてこれは何だと、あたかも憑かれたかのように夢中で取り組み、相当な研究者、共同研究者と交流し、相当なメールと印刷部が溜まっている。経過、成果などきちんとしておくべきと考えて、2か月で、2つの論文の出版を確定させて、ちょうど良いタイミングもあって、一つは4月早々に既に出版されている。
まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。 出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、
関数 y = 1/x のグラフは、原点で ゼロである
と宣言している。すなわち、 1/0=0 である。
グラフを想像して、そんな馬鹿な、信じられない、そのようなことは考えるべきではないとは、結構な数学者の真面目な意見であった。 そこで、
その実態を追及して、ムーア・ペンローズ一般逆の考えがあることを認識して、いわば奇妙な、変な逆として、分数を拡張しているが、永年研究してきた チコノフ正則化法の神秘力 によってそれらは 数の実体である と認識した。
との信念を持って研究を進め、共同研究者には、割り算の意味から、当たり前だとか、計算機は(:アルゴリズムは)そのように解釈する、物理的な楽しい説明さえ現れて、実数の場合には 論文も出版されたこともあり、既に当たり前で 今後 物理的な応用などに関心が移っている。― 要点は、上記双曲線は、原点で猛烈な非連続性を有し、爆発や衝突、駒で言えば、 中心の特異性などの現象を記述していることが分った。
上記2件の論文出版の確定をみて、4月1日:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。
として、公表して 複素解析に取り掛かった。
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、容易に進められる状況ではない。
念をおしたいのは、 ゼロで割る新しい結果は、従来の数学に 何ら矛盾するものでは、なく、従来ゼロで割るときに避けてきたところに、ある種の新しい結果が得られるということである (複素解析学では、無限遠点が有るので、少し意味あいが変わる)。 すなわち、 従来の数学に、新しい数学が加わると言うことである。その新しい数学が、実が有って、物理的な意味や、従来の数学に好ましい影響を与えるかは、多くは、今後の問題である。ある変な島を発見した。つまらなそうだから、関心ないは 当然有り得る態度である。
そこで、今後の姿勢は、世界観の問題に大きく影響されるのではないだろうか。ゼロで割ればゼロになり、割り算を自然に拡張すれば、それに限るという、何か裏に大きな、凄い世界が有るのではないだろうか、と構想している。― 1/0 は 無限大、無限遠点である、それは良く分る、しかしながら、無限大、無限遠点は 数ではないではないか、矛盾ではないか? 他方、数学は 1/0=0と一意に定めている、何か有るのではないだろうか? どうして、南極と北極がくっ付いているのか? どうして、原点と無限遠点がくっ付いているのか? 神の 人類に対する意地悪、隠しごと? 人類の知能検査か?
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products f
再生核研究所声明199(2015.1.15) 世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算は 西暦628年インドでゼロが文献に記録されて以来、問題とされてきた。ゼロ除算とは、ゼロで割ることを考えることである。これは数学の基本である、四則演算、加法、減法、乗法、除法において、除法以外は何時でも自由にできるのに、除法の場合だけ、ゼロで割ることができないという理由で、さらに物理法則を表す多くの公式にゼロ除算が自然に現れていることもあって、世界各地で、今でも絶えず、問題にされていると考えられる。― 小学生でも どうしてゼロで割れないのかと毎年、いろいろな教室で問われ続いているのではないだろうか.
これについては、近代数学が確立された以後でも、何百年を越えて 永い間の定説として、ゼロ除算は 不可能であり、ゼロで割ってはいけないことは、初等教育から、中等、高校、大学そして学術界、すなわち、世界の全ての文献と理解はそうなっている。変えることのできない不変的な法則のように理解されていると考えられる。
しかるに2014年2月2日 ゼロ除算は、可能であり、ゼロで割ればゼロであることが、偶然発見された。その後の経過、背景や意味付け等を纏めてきた:
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)―
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
ところが、気づいてみると、ゼロ除算は当たり前なのに、数学者たちが勝手に、割り算は掛け算の逆と思い込み、ゼロ除算は不可能であると 絶対的な真理であるかのように 烙印を押して、世界の人々も盲信してきた。それで、物理学者が そのために基本的な公式における曖昧さに困ってきた事情は ニュートンの万有引力の法則にさえ見られる。
さらに、誠に奇妙なことには、除算はその言葉が表すように、掛算とは無関係に考えられ、日本ばかりではなく西欧でも中世から除算は引き算の繰り返しで計算されてきた、古い、永い伝統がある。その考え方から、ゼロ除算は自明であると道脇裕氏と道脇愛羽さん6歳が(四則演算を学習して間もないときに)理解を示した ― ゼロ除算は除算の固有の意味から自明であり、ゼロで割ればゼロであるは数学的な真実であると言える(声明194)。数学、物理、文化への影響も甚大であると考えられる。
数学者は 数学の自由な精神で 好きなことで、考えられることは何でも考え、不可能を可能にし、分からないことを究め、真智を求めるのが 数学者の精神である。非ユークリッド幾何学の出現で 絶対は変わり得ることを学び、いろいろな考え方があることを学んできたはずである。そのような観点から ゼロ除算の解明の遅れは 奇妙な歴史的な事件である と言えるのではないだろうか。
これは、数学を超えた、真実であり、ゼロ除算は不可能であるとの 世の理解は間違っている と言える。そこで、真実を世界に広めて、人類の歴史を進化させるべきであると考える。特に声明176と声明185を参照。ゼロ除算は 堪らなく楽しい 新世界 を拓いていると考える。
以 上
1+0=1 1ー0=0 1×0=0 では、1/0・・・・・・・・・幾つでしょうか。
0??? 本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・
1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)
ゼロ除算は、不可能であると誰が最初に言ったのでしょうか・・・・
7歳の少女が、当たり前であると言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。
割り算を掛け算の逆だと定義した人は、誰でしょう???
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。
小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
https://www.pinterest.com/pin/234468724326618408/
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・
無限遠点は存在するが、無限大という数は存在しない・・・・
加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849/a37209195?sort=1&fr=chie_my_notice_canso
0×0=0・・・・・・・・・だから0で割れないと考えた。
アラビア数字の伝来と洋算 - tcp-ip
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
明治5年(1872)
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
地球平面説→地球球体説
天動説→地動説
1/0=∞ 若しくは未定義 →1/0=0
地球人はどうして、ゼロ除算1300年以上もできなかったのか? 2015.7.24.9:10 意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 生態系では、人類が がん細胞であった とならないとも 限らないのでは?
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
地球平面説→地球球体説
地球が丸いと考えた最初の人-ピタゴラス
地球を球形であることを事実によって証明しようとした人-マゼラン
地球を球形と仮定して初めて地球の大きさを測定した人-エラトステネス
天動説→地動説 アリスタルコス=ずっとアリストテレスやプトレマイオスの説が支配的だったが、約2,000年後にコペルニクスが再び太陽中心説(地動説)を唱え、発展することとなった。https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AA%E3%82%B9%E3%82%BF%E3%83%AB%E3%82%B3%E3%82%B9 …
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか???
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか???
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
0 件のコメント:
コメントを投稿