2015年12月1日火曜日

加法(かほう、英: addition, summation)

NEW !
テーマ:
加法(かほう、英: addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、sum)という。記号は「+」。
自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。
減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。
無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。
目次 [非表示]
1 記法
2 性質
3 素朴な定義
4 正負の数の計算方法
5 脚注
6 関連項目
記法[編集]
それぞれの項が分かっていて全てを書き表すことができるとき、それらの和は記号 "+" を用いて表す。例えば、1, 2 の和は
2 + 1
と記される[注 1]。これは 3 に等しい。このことは等式として
2 + 1 = 3
と表される。
3 項以上の足し算についても、たとえば次のように書くことができる。
7 + 3 + 1
これは、7 + 3 の結果と 1 の間の加法を表す。
(7 + 3) + 1
また、全てを書き表すことができなくても、暗に何らかの規則性がある場合には間を記号 "…" で省略して表すことがある。例えば、1 から 10 までの自然数の和は
1 + 2 + … + 10 = 55
のように書き表す。ただしこのような場合は、記号 ∑ を用いて書き表すほうが規則性を陽に表すことができて便利であり紛れがない(総和の項参照)。
\sum_{n=1}^{10} n = 1 + 2 + \dots + 10 = 55.
注意すべき点として、2 つの数に対する加法を L + R と表したときに左の項 L と右の項 R が「元の数」と「加える数」のいずれであるかは加法の定義に含まれない。
性質[編集]
数の加法のみに注目してその性質を挙げると以下のようなものがある。
対称性(交換法則): n + m = m + n
有限個の数を足すときは、順番を入れ替えて計算しても和は変わらない(ただし、無限個の数を足す場合は順番を入れ替えてはならない)。

1 + 3 + 9 = 1 + 9 + 3 = 13
推移性(結合法則): (n + m) + k = n + (m + k) = n + m + k
有限個の数を足すためには、どこから加えていっても結果は同じである。
これらは抽象代数学においては "加法" と呼ぶべきものの満たすべき公理的な性質と見なされる。他にも
単位元の存在 : ある数に 0 を加えても変化しない。
n + 0 = n
逆元の存在 : ある数と、絶対値が同じで符号の異なる数との和は 0 である。
(-n) + n = 0
などが加法に関する性質として挙げられる。
素朴な定義[編集]
何かを加えたとき、その結果として数が多くなったり量が大きくなったりすることは経験的に知られている。たとえばコップに水を加えればコップの中の水は増えるし、部屋に人が入れば部屋の中の人数は多くなる。このような「加えること」や「増加すること」に対する類推から、数学における演算として定義されたものが加法であると言える。 従って、直感的には「元の数」と「加える数」の間の加法は、それら 2 つの数より大きな数を結果として与えることが期待される。 このことは必ずしも正しくないが、正の数に関しては成り立っている。
また加える順番は結果には関係なく、加える順番を自由に変えたとしても得られる結果は常に等しくなる。このことは 2 つのコップに水が入っていたとして、どちらの水をどちら側へ注いでも水の量は変わらないことなどから類推できる。
加法の逆の操作として減法を考えたときに、減法の結果として負の数が得られることがある。減法によって新しい数を作ったとき、
a - b = c
ここで得られた数 c は減法の性質から、次のような関係が成り立つ。
c + b = a
つまり、初めに a - b という引き算によって得られた新しい数 c は、b に加えた結果が a に等しくなる性質を持つ。 具体的に 2 から 5 を引いた数を c としたとき、5 に c を足した数は 2 になる。2 は 5 より小さいので、これは加法の結果がより小さな数を与えることを示している。
上の式で a を 0 としたとき、c は b との和が 0 となる数である。この c を (-b) と書くことにする。(-b) の足し算は b の引き算と同じ結果を常に与える。したがって、正の数の減法は負の数の加法で置き換えられる。
a - b = a + (-b)
さらに、スカラー量だけでなく、ベクトル、行列にも加法が定義されるようになるが、いずれも交換法則、結合法則を満たすものである。
正負の数の計算方法[編集]
2 数 a, b の符号と絶対値に注目すると、和 (a + b) は次のように計算することができる。
2 数 a, b の和 (a + b) の計算結果
符号 |a| > |b| |a| < |b| |a| = |b|
a ≥ 0, b ≥ 0 |a| + |b|
a < 0, b < 0 -(|a| + |b|)
a ≥ 0, b < 0 |a| - |b| -(|b| - |a|) 0
a < 0, b ≥ 0 -(|a| - |b|) |b| - |a| 0
2 数の符号が同じ場合
a, b が共に正の数のとき
a の絶対値 |a| と b の絶対値 |b| を足し、正の符号を付ける。
a, b が共に負の数のとき
a の絶対値 |a| と b の絶対値 |b| を足し、負の符号を付ける。
2 数の符号が異なる場合
a の絶対値 |a| が b の絶対値 |b| より大きい場合
a が正の数のとき
b が負の数のとき
a の絶対値 |a| から b の絶対値 |b| を引き、正の符号を付ける。
a が負の数のとき
b が正の数のとき
a の絶対値 |a| から b の絶対値 |b| を引き、負の符号を付ける。
a の絶対値 |a| が b の絶対値 |b| より小さい場合
b が負の数のとき
a が正の数のとき
b の絶対値 |b| から a の絶対値 |a| を引き、負の符号を付ける。
b が正の数のとき
a が負の数のとき
b の絶対値 |b| から a の絶対値 |a| を引き、正の符号を付ける。
a, b の絶対値が等しい場合
和は 0 である。https://ja.wikipedia.org/wiki/%E5%8A%A0%E6%B3%95
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}


\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 258: A new viewpoint of the division by zero $z/0=0$ from area and the point at infinity
}

\author{{\it Institute of Reproducing Kernels}\\
}

\date{November 26, 2015}

\maketitle
{\bf Abstract: } In this announcement, we will state a reality of the division by zero $z/0=0$ from the viewpoint of area and the point at infinity. We will be able to see a great impact for the idea of our space.

\bigskip
{\bf Introduction}

\bigskip

%\label{sect1}
By {\bf a natural extension of the fractions}
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, the division by zero
\begin{equation}
\frac{b}{0}=0,
\end{equation}
is clear and trivial. See (\cite{msy}) for the recent results. See also the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252}). The division by zero is not only mathematical problems, but also it will give great impacts to human beings and the idea on the universe. The Institute of Reproducing Kernels is presenting various opinions in Announcements (many in Japanese) on the universe.

In this Announcement, we will refer to a new viewpoint of the division by zero in the Euclidean space from area and the point at infinity. In our common level, the results will be very surprized for many peopule.

\section{The point at infinity}

We will be able to see the whole Euclidean plane by the stereographic projection onto the Riemann sphere. The behavior of the space around the point at infinity may be considered by that around the origin by the linear transform $W = 1/z$(\cite{ahlfors}). We thus see that

\begin{equation}
\lim_{z \to \infty} z = \infty,
\end{equation}
however,
\begin{equation}
[z]_{z =\infty} =0,
\end{equation}
by the division by zero. The difference of (1.1) and (1.2) is very important as we see clearly from the function $1/z$ and the behavior at the origin. The limiting value to the origin and the value at the origin are different. For the surprising results, we will state the property in the real space as follows:
\begin{equation}
\lim_{x\to +\infty} x =+\infty , \quad \lim_{x\to -\infty} x = -\infty,
\end{equation}
however,
\begin{equation}
[x]_{ +\infty } =0, \quad [x]_{ -\infty } =0.
\end{equation}

\section{Interpretation by area}

In orde to see some realization of the properties of (1.3) and (1.4), we will consider the triangle with the basic edge (side) $a$ and high $h$. Then, the area $S$ of the triangle is given
by
\begin{equation}
S = \frac{1}{2} ah.
\end{equation}
By fixing the high $h$ and the line containing the side $a$, we will consider the limit $a \to +\infty$. Then, of course,
\begin{equation}
\lim_{a \to +\infty} S = +\infty.
\end{equation}
However, we will see that
\begin{equation}
[S]_{a=\infty} =0,
\end{equation}
just like the division by zero, because, when $a=\infty$, the triangle is broken,
we cannot consider the area of the triangle. Here, the notation $a=\infty$ is not good, however, its meaning is clear; it will mean the case of the parallel lines of the line containing the side $a$ and the line through the fixed vertex of the triangles when we consider $a$ tends to $+\infty$.

The strong discontinuity of the division by zero is appeared as the broken of the triangles.
These phenomena may be looked in many situations as the unverse one.
We can consider similar problems for many types volumes. However, the simplest cases are
disc and sphere (ball) with radius $1/R$. When $R \to +0$, the areas and volumes tend to $+\infty$, however, when $R=0$, they are zero, because they become the half-plane and half-space, respectively.

\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{ahlfors}
Ahlfors, L. V. (1966). {\it Complex Analysis}. McGraw-Hill Book Company.

\bibitem{bht}
Bergstra, J. A., Hirshfeld Y., \& Tucker, J. V. (2009).
{\it Meadows and the equational specification of division} (arXiv:0901.0823v1[math.RA] 7 Jan) .

\bibitem{cs}
Castro, L. P., \& Saitoh, S. (2013).
Fractional functions and their representations. {\it Complex Anal. Oper. Theory {\bf7}, no. 4, }1049-1063.

\bibitem{kmsy}
Kuroda, M., Michiwaki, H., Saitoh, S.,\& Yamane, M. (2014).
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
{\it Int. J. Appl. Math. Vol. 27, No 2 }, 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
Michiwaki H., Saitoh S., \& Yamada M. (2015).
Reality of the division by zero $z/0=0$. IJAPM (International J. of Applied Physics and Math. (to appear).

\bibitem{mst}
Michiwaki, H., Saitoh, S., \& Takagi, M.
A new concept for the point at infinity and the division by zero z/0=0
(manuscript).

\bibitem{s}
Saitoh, S. (2014).
Generalized inversions of Hadamard and tensor products for matrices,
{\it Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 , 87-95.} http://www.scirp.org/journal/ALAMT/

\bibitem{taka}
Takahasi, S.-E. (2014).
{On the identities $100/0=0$ and $ 0/0=0$.}
(note)

\bibitem{ttk}
Takahasi, S.-E., Tsukada, M., \& Kobayashi, Y. (2015).
{\it Classification of continuous fractional binary operations on the real and complex fields. } Tokyo Journal of Mathematics {\bf 8}, no.2(in press).

\bibitem{ann179}
Division by zero is clear as z/0=0 and it is fundamental in mathematics. {\it Announcement 179 (2014.8.30).}

\bibitem{ann185}
The importance of the division by zero $z/0=0$. {\it Announcement 185 (2014.10.22)}.

\bibitem{ann237}
A reality of the division by zero $z/0=0$ by geometrical optics. {\it Announcement 237 (2015.6.18)}.

\bibitem{ann246}
An interpretation of the division by zero $1/0=0$ by the gradients of lines. {\it Announcement 246 (2015.9.17)}.

\bibitem{ann247}
The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$. {\it Announcement 247 (2015.9.22)}.

\bibitem{ann250}
What are numbers? - the Yamada field containing the division by zero $z/0=0$. {\it Announcement 250 (2015.10.20)}.

\bibitem{ann252}
Circles and curvature - an interpretation by Mr. Hiroshi Michiwaki of the division by
zero $r/0 = 0$. {\it Announcement 252 (2015.11.1)}.

\end{thebibliography}



\end{document}


再生核研究所声明251(2015.10.27) 円と曲率 ―ゼロ除算z/0=0から導かれる道脇裕氏の解釈
(再生核研究所は ゼロ除算の研究を推進している。特に研究は初期段階にあるので ゼロ除算の実在感の観点からの考察を進めている。そのような折り、道脇裕氏が2015.9.3. 付け文書を送って来たので、要点を纏めて置きたい。)

底円の半径がr_2である直円錐を考える。 それを半径r_1 の底円に平行な円で切る。2つの円板の間の距離をdとする。 このとき、直円錐の頂点と底円板の間の 直円錐の表面上での 距離RはEM半径と呼ばれ、道脇愛羽(8歳)さん が計算され、

R=r_2/(r_2-r_1 ) √(d^2+(r_2-r_1 )^2 )

となる。これは2つの円板で囲まれた部分の 平面上での回転を考えたときに、底円が描く円の半径を計算されたものである。
半径Rの円の曲率はK=K(R)=1/Rで定義される。いま、r_1 がr_2 に近づいた場合を考える。もちろん、d を一定にしてである。まず、極限値を考えれば、Rは無限大に発散して、底円が描く円は 直線に近づき、実際、r_1 = r_2の時は 底円が描く円は直線になり、回転体は直線運動を行うことが分かる。
ところがゼロ除算は、r_1 =r_2のとき、Rがゼロであることを言っているが、それは、何を意味するだろうか。ゼロ除算は K=K(R)=1/R がR=0 でゼロと言っているから、その時の曲率がゼロ、すなわち、極限の場合と同様に、底円が描く円は直線になり、回転体は直線運動を行うことを述べている。
いまの場合、極限で考えた極限値とゼロ除算、すなわち、R=0自身の結果が同じことを述べている。
この現象は、ゼロ除算が現実の現象を良く表現しているものと考えられる。

同時に、半径ゼロの円(点)の曲率がゼロである ことをよく、表している。
上記、回転体の運動の例は、ゼロ除算の強力な不連続性をよく捉えたものとして、大変面白いのではないだろうか。

以 上

再生核研究所声明249(2015.10.20)数とは何か ― ゼロ除算z/0=0を含む
(数とは、ゼロ除算z/0=0を含む 山田正人 体の元のことである:
2015.10.16.07:30 小雨の中、興奮しながら散歩していた。 その時、 上記のような直観が確信をもって、熱く閃いた。複素数体に対して、山田体を広く用いるべきである。 そこでは、例外なく逆数が定義され、言わば完備化空間のように完全になり、ゼロ除算の世界が拓かれてくる。
2015.10.16.08:12)

ゼロ除算z/0=0は 分数の自然な拡張として既に1+1=2のように自明であり、しかもそれは、我々の数学そのものであり、自然現象もきちんと表している。しかしながら、永い間の偏見の世界史、それも千年を超える偏見であり、天才的な数学者たちの足跡を省みて、中々世の中で理解されない状況があるのは、世の関係サイトを見ても良く分かる。それらには、そもそもゼロに対する恐怖心とゼロ除算にからむ、不可思議で奇妙な論調を見ることができる。
ゼロ除算のこのような歴史は、やがて人類の愚かさの象徴であると世界史で記録されるだろう。
1/0 とは何だと、恐怖心を抱く者は 尚世に多い状態と言える。公理論的に吟味したか、現代数学とは違う、変な世界の数学ではないか、数学的に正しくともそのような変な数学が大きな意味を持つはずがない等と 特に優秀な人たちが述べて来たのは大変興味深い事実である。
最近、数学基礎論、公理論、計算機科学の専門家たちのゼロ除算に関する論文を発見した
Meadows and the equational specification of division
J A Bergstra,Y Hirshfeld and J V Tucker
が、結論ではとにかく、奇妙なことが書かれている(arXiv:0901.0823v1[math.RA] 7 Jan 2009)。
文献を見れば、彼らが相当な専門家であることが分かる。― 上記は要するにゼロ除算を含むいろいろな公理系を建設できるが、幻のようであるが計算に役立つと言っているようである。 きちんと書かれているのは、ゼロ除算が可能であるとは 主張しない ということである。
しかるに、我々はゼロ除算が可能であり、ゼロ除算は我々の数学そのものであると言っている。我々の本質的な原理は、ゼロ除算z/0=0は定義そのものであり、そのように定義し、導入することによって、数学は完全になり、新しい世界を拓くと言っている。いろいろな証拠を挙げて、解説してきた。
しかしながら、それでもなお、1/0 とは何ものかという、思いが残っているかも知れない。 それは数と言えるのだろうかなどの雑念が残っているかも知れない。
このような折り、2015.10.3.山田正人氏が研究室を訪れ、上記の論文とともに氏の考えを夢中で討論した。そのときは、2人ともそんなには気にしなかったのであるが、山田氏は、ゼロ除算を含む 体の構造を入れる方法を説明された。 体とは、四則演算が自由にできる 数学の述語で、 言わば数の資格もつ性質を表している。こうなると、ゼロ除算z/0は代数的にも堂々と数であると言明できることになる。
念を押したいのは、ゼロ除算z/0=0とは定義そのものであり、その定義で、全ての理論は現代数学の中で、新しい世界を展開できるということである。
実際、山田氏の上記の理論から、新しい結果は、何一つ得られない、数学の内容としては自明なものばかりである。
しかしながら、引用された上記論文や、体の概念の重要性から、山田氏の発見された体は 極めて重要であり、数とは 山田氏の発見された体の元、そのものである と言える。
山田氏の発見された、体の構造とは簡単であるが、新規な面白い概念を含んでいるので、内容は 当分は未公開としたい。
極めて面白いのは、y軸の勾配がゼロであるという知見をゼロ除算の帰結として得ていたが、山田氏の上記の考えは、そのことの帰結を微妙な論理で同様に導いている事実である。山田氏の考えには新しい世界観があるのは確かであると言える。
以上


再生核研究所声明232(2015.5.26)無限大とは何か、無限遠点とは何か。― 驚嘆すべきゼロ除算の結果

まず、ウィキペディアで無限大、無限遠点、立体射影: 語句を確認して置こう:

無限大 :記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)で表す。 大雑把に言えば、いかなる数よりも大きいさまを表すものであるが、より明確な意味付けは文脈により様々である。例えば、どの実数よりも大きな(実数の範疇からはずれた)ある特定の“数”と捉えられることもある(超準解析や集合の基数など)し、ある変量がどの実数よりも大きくなるということを表すのに用いられることもある(極限など)。無限大をある種の数と捉える場合でも、それに適用される計算規則の体系は1つだけではない。実数の拡張としての無限大には ∞ (+∞) と -∞ がある。大小関係を定義できない複素数には無限大の概念はないが、類似の概念として無限遠点を考えることができる。また、計算機上ではたとえば∞+iのような数を扱えるものも多い。
無限遠点 : ユークリッド空間で平行に走る線が、交差するとされる空間外の点あるいは拡張された空間における無限遠の点。平行な直線のクラスごとに1つの無限遠点があるとする場合は射影空間が得られる。この場合、無限遠点の全体は1つの超平面(無限遠直線、無限遠平面 etc.)を構成する。また全体でただ1つの無限遠点があるとする場合は(超)球面が得られる。複素平面に1つの無限遠点 ∞ を追加して得られるリーマン球面は理論上きわめて重要である。無限遠点をつけ加えてえられる射影空間や超球面はいずれもコンパクトになる。
立体射影: 数学的な定義

• 単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
• 冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
• 3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
• M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。

無限大とは何だろうか。 図で、xの正方向を例えば考えてみよう。 0、1、2、3、、、などの正の整数を簡単に考えると、 どんな大きな数(正の) n に対しても より大きな数n + 1 が 考えられるから、正の数には 最も大きな数は存在せず、 幾らでも大きな数が存在する。限りなく大きな数が存在することになる。 そうすると無限大とは何だろうか。 普通の意味で数でないことは明らかである。 よく記号∞や記号+∞で表されるが、明確な定義をしないで、それらの演算、2 x∞、∞+∞、∞-∞、∞x∞,∞/∞ 等は考えるべきではない。無限大は普通の数ではない。 無限大は、極限を考えるときに有効な自然な、明確な概念、考えである。 幾らでも大きくなるときに 無限大の記号を用いる、例えばxが どんどん大きくなる時、 x^2 (xの2乗)は 無限大に近づく、無限大である、無限に発散すると表現して、lim_{x \to +\infty} x^2 =+∞ と表す。 記号の意味はxが 限りなく大きくなるとき、x の2乗も限りなく大きくなるという意味である。 無限大は決まった数ではなくて、どんどん限りなく 大きくなっていく 状況 を表している。
さて、図で、 x が正の方向で どんどん大きくなると、 すなわち、図で、P ダッシュが どんどん右方向に進むとき、図の対応で、Pがどんどん、 Nに近づくことが分かるだろう。
x軸全体は 円周の1点Nを除いた部分と、 1対1に対応することが分かる。 すなわち、直線上のどんな点も、円周上の1点が対応し、逆に、円周の1点Nを除いた部分 のどんな点に対しても、直線上の1点が対応する。
面白いことは、正の方向に行っても、負の方向に行っても原点からどんどん遠ざかれば、円周上では Nの1点にきちんと近づいていることである。双方の無限の彼方が、N の1点に近づいていることである。
この状況は、z平面の原点を通る全ての直線についても言えるから、平面全体は球面全体からNを除いた球面に 1対1にちょうど写っていることが分かる。
そこで、平面上のあらゆる方向に行った先が存在するとして 想像上の点 を考え、その点に球面上の点 Nを対応させる。 すると、平面にこの想像上の点を加えた拡張平面は 球面全体 (リーマン球面と称する) と1対1に 対応する。この点が 無限遠点で符号のつかない ∞ で 表す。 このようにして、無限を見ることが、捉えることができたとして、喜びが湧いてくるのではないだろうか。 実際、これが100年を越えて、複素解析学で考えられてきた無限遠点で 美しい理論体系を形作ってきた。
しかしながら、無限遠点は 依然として、数であるとは言えない。人為的に無限遠点に 代数的な構造を定義しても、人為的な感じは免れず、形式的、便宜的なもので、普通の数としては考えられないと言える。
ところが、ゼロ除算の結果は、1 / 0 はゼロであるというのであるから、これは、上記で何を意味するであろうか。基本的な関数 W=1/z の対応は、z =0 以外は1対1、z =0 は W=0 に写り、全平面を全平面に1対1に写している。 ゼロ除算には無限遠点は存在せず、 上記 立体射影で、 Nの点が突然、0 に対応していることを示している。 平面上で原点から、どんどん遠ざかれば、 どんどんNに近づくが、ちょうどN に対応する点では、 突然、0 である。
この現象こそ、ゼロ除算の新規な神秘性である。
上記引用で、記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)、オイラーもゼロ除算は 極限の概念を用いて、無限と理解していたとして、天才 オイラーの間違いとして指摘されている。
ゼロ除算は、極限の概念を用いて得られるのではなくて、純粋数学の理論の帰結として得られた結果であり、世の不連続性の現象を表しているとして新規な現象の研究を進めている。
ここで、無限大について、空間的に考えたが、個数の概念で、無限とは概念が異なることに注意して置きたい。 10個、100個、無限個という場合の無限は異なる考えである。自然数1,2,3、、、等は無限個存在すると表現する。驚嘆すべきことは、無限個における無限には、幾らでも大きな無限が存在することである。 例えば、自然数の無限は最も小さな無限で、1cm の長さの線分にも、1mの長さの線分にも同数の点(数、実数)が存在して、自然数全体よりは 大きな無限である。点の長さはゼロであるが、点の集まりである1cmの線分には長さがあるのは、線分には点の個数が、それこそ目もくらむほどの多くの点があり、長さゼロの点をそれほど沢山集めると,正の長さが出てくるほどの無限である。


以 上


世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。

再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点
(道脇さんたちの、和算の伝統を感じさせるような、何とも 言えない魅力 がありますね。 添付のように完成させたい。例の専門家たち、驚いて対応を検討しているのでは?どんどん、事情がみえてきました. 今朝の疑問も きれいに散歩中 8時15分 ころ、解決できました.成文化したい。2015.11.1.9:7
無限遠点の値の意味を 約1年半ぶりに 神は関数値を平均値として認識する で 理解できました。今、気になるのは,どうして、正の無限 負の無限、および ゼロが近いのかです。その近いという意味を、 正確に理解できない。 近い事実は 添付する 電柱の左右の傾きに現れている。
log 0=0
と定義するのが 自然ですが、それには、 ゼロと マイナス無限大 が一致しているとも言える。 そのところが 不明、何か新しい概念、考え 哲学が 求められている???
2015.11.1.05:50)

ローラン展開の正則部の値の解釈のように(再生核研究所声明255 (2015.11.03) 神は、平均値として関数値を認識する)、実は当たり前だったのに、認識がおかしかったことに気づいたので、正確に表現したい。
まず、正の無限大とは何だろうか。 1,2,3,…… といけば、正の整数は 正の無限大に収束、あるいは発散すると表現するだろう。 この正確な意味は イプシロン、デルタ論法という表現で厳格に表現される。すなわち、 どんなに大きな 整数 n をとっても、あるN を取れば(存在して)、N より大の 全ての整数 m に対して、n < m が成り立つと定義できる。 いろいろな設定で、このようにして、無限は定義できる。 どんなに大きな数に対しても、より大の整数が存在する。 それでは、+∞ とは何だろうか。 限りなく大きな数の先を表す概念であることが分かる。 大事な視点は +∞は 定まった数ではなくて、極限で考えられたもので、近づいていく先を表した状況で考えられていることである。 これらの概念は極限の概念として、現代数学で厳格に定義され、その概念は新しいゼロ除算の世界でも、全て適切で、もちろん正しい。
簡単な具体例で説明しよう。 関数y=1/x のグラフはよく知られているように、正の実軸からゼロに近づけば、+∞に発散し、負からゼロに近づけば、-∞に発散する。 ところが、原点では、既に述べてきたように、その関数値はゼロである。 この状況を見て、0、+∞、-∞ らが近い、あるいは 一致していると誤解してはならない。+∞、-∞  らは数ではなく、どんどん大きくなる極限値や、どんどん小さくなる極限値を表しているのであって、それらの先、原点では突然にゼロにとんでいる 強力な不連続性を示しているのである。
複素解析における無限遠点も同様であって、立体射影で複素平面はリーマン球面に射影されるが、無限遠点とは あらゆる方向で原点から限りなく遠ざかった時に、想像上の点が存在するとして、その射影としてりーマン球面上の北極を対応させる。 関数W=1/z は原点でその点が対応すると、解析関数論では考え、原点で一位の極をとると表現してきた。
しかしながら、新しく発見されたゼロ除算では、1/0=0 であり 原点には、ゼロが対応すると言っている。 これは矛盾ではなくて、上記、一位の極とは、原点に近づけは、限りなく無限遠点に近づく、あるいは発散するという、従来の厳格議論はそのままであるが、ゼロ除算は、原点自身では、数としてゼロの値をきちんとして取っているということである。 この区別をきちんとすれば、従来の概念とゼロ除算はしっかりとした位置づけができる。 近づく値とそこにおける値の区別である。

以 上









0 件のコメント:

コメントを投稿