2015年2月12日木曜日

和算(わさん)

和算
和算(わさん)は、日本独自に発達した数学である。狭義には大いに発展した江戸時代の関孝和以降のそれを指すが、西洋数学導入以前の数学全体を指すこともある。
目次 [非表示]
1 歴史
1.1 江戸時代以前
1.2 江戸時代
1.2.1 初期の和算
1.2.2 和算の中興
1.2.3 関流の勃興
1.2.4 江戸後期から明治にかけて
1.3 明治時代以後
1.4 和算研究
2 和算の性格
3 算木とそろばん
4 算額
5 和算の発展に関わった人物
6 和算を題材とした作品
7 参考文献
8 関連文献
9 関連項目
10 外部リンク
歴史[編集]
江戸時代以前[編集]
「算道」も参照
和算は大陸の数学から多大な影響を受けている。大陸では『九章算術』と呼ばれる数学書が漢代には登場し、そのなかで面積の計算法や比例・反比例・ピタゴラスの定理などを紹介している。7世紀以降、遣隋使・遣唐使の派遣などにより、大陸の文化が日本に次々と流入するようになる。大陸の律令制を元に作られた大宝律令では、算博士・算師と呼ばれる官職が定められていた。算博士は算師の育成にあたるとともに、『九章算術』を始めとした大陸の算書の知識が要求された(算道)。『万葉集』には次のような歌がみられる。
若草乃 新手枕乎 巻始而 夜哉将間 二八十一不在國 (わかくさの にひたまくらを まきそめて よをやへだてる にくくあらなくに 巻十一 2542番)
「くく」という読みに「八十一」という漢字が当てられており、すでに九九が日本で知られていたことがわかる。
中世および江戸時代以前の近世において、どのような数学が行われたかは全く分かっていない。近世以前においては、算道は官司請負制に基いて世襲によって各々の氏族に伝えられるようになり、一種の秘伝のように扱われ、閉鎖的な学術となっていたためである。
『九章算術』などは散逸してしまったようだが、土木・建築・財務・暦の計算などにある程度の数学が必要だったのは確かである。江戸時代の古老が「太閤検地の頃は算木を使った」と回想しており、また『塵劫記』の開平計算が算木による方法に近いことから、江戸時代直前まで算木が優勢であったと思われる。そろばんの導入時期は不明であるが、毛利重能の『割算書』(1622年(元和8年))では珠算が解説されている。近年、和算の成立に、宣教師が伝えたヨーロッパ数学の影響が有るとする見解が有るが、その当否は、今後の数学史研究の課題である。
江戸時代[編集]
江戸時代に日本の数学は大いに発展した。
初期の和算[編集]
『改算塵劫記』。国立科学博物館の展示。
このきっかけになったのが1627年(寛永4年)、京都の吉田光由によって書かれた『塵劫記』である。明代の算術書『算法統宗』を模範としたもので、そろばんの使用法や測量法といった実用数学に加え、継子立て・ねずみ算といった数学遊戯が紹介されている。『塵劫記』はベストセラーとなり、初等数学の標準的教科書として江戸時代を通じて用いられた。また、本書を模倣したり、書名を『○○塵劫記』としたものも多く出版された。
『塵劫記』は初等的な教科書だったが、ある版には巻末に他の数学者への挑戦として、答えをつけない問題(遺題)を出した。これ以降、先に出された遺題を解き新たな遺題を出すという連鎖(遺題継承)が始まり、和算で扱われる問題は急速に実用の必要を超え、技巧化・複雑化した。
和算の中興[編集]
関孝和著「括要算法」の、ベルヌーイ数や二項係数について書かれた頁
遺題継承が盛んになるにつれ、しばしば、それまでの初等算術的な手法では手に負えない問題が現れるようになった。沢村一之はその著『古今算法記』で、当時注目されていた元朝の朱世傑の著『算学啓蒙』その中の天元術(未知数が1個の代数方程式とその数値的解法)を困難な遺題の解決に用いて、その術の威力をしめした。また彼は同書に遺題として、天元術では扱えない複数の未知数を設ける代数方程式(いわゆる多元連立方程式)を必要とする問題を提出した。これに応えて、江戸の関孝和や京都の田中由真(たなか よしざね)らが相次いで傍書法・演段術、つまり文字式による筆算の計算法と、それによって編み出された多元連立方程式の解決法を創出した。日本の数学史に一線を画したのが、関孝和である。彼は天元術・演段法を発展させて点竄術を創始した。これは傍書法によって問題の条件を文字に写して、それによって理論を整理することで術(答えを得るための計算法)を得る、いわゆる代数学である。これによって円の算法や複雑な条件を持つ問題など難しい理論をあつかう算法が様々に解けるようになった。この術は後代「千変万化」の術とも称えられ、あるいはこれが日本数学の全体ともいえる。すなわち、日本数学の基礎は点竄術によって初めて立ち、この術のおかげで数学の問題の難度や理論性がより高度に独特に発展していくこととなった。江戸後期の坂部広胖は「どんな難解な術でも点竄の理から漏れることはない。」といっている。関孝和はまたこの他
約術 - 数値の簡単化の方法
剰一・朒一術、翦管術 - 剰余方程式問題
招差術 - 方程式の係数の決定法
垜術 - 数列問題
角術 - 正多角形の各数値の関係式問題
適尽法 - 解無し(実数解無し)の方程式の最適化
円理 - 円や曲線の諸問題
交式斜乗法 - 行列式展開
方陣・円攢 - 魔方陣の理論
など、多岐にわたる数学の分野において、研究あるいは新たな発明をしている。江戸初期には数学の中心は京阪地方だったが、この頃から江戸の関孝和の学統、関流が圧倒的な主流派になってゆく(この為か、京阪地方の和算家の実態があまり今日に伝わっていない)。このように遺題継承の結果、関孝和のような独創的な数学者もあらわれて、日本の数学は高度な代数・整数方程式論・解析学・幾何学が実用の範囲を超えて発達していった。
関流の勃興[編集]
関孝和は、日本の算術の発展に大いに寄与した一人である。
和算における解析学に関連した研究を円理といい、関孝和の登場以降大いに発達した。円理という名は、円周率や円積率、球の体積や表面積が主な問題となったことによる。関孝和は円に接する正多角形の辺の長さを用い、円周率を11桁まで得ている。関の弟子である建部賢弘は同様の手法をRichardson補外と組み合わせて、42桁まで正しい値を計算している。彼はさらに進んで、綴術いわゆる無限級数とその導出法を編み出し、それにより関孝和の成しえなかった弧背の長さなど円理における各種計算法を導き出し得た。その著『綴術算経』では(arcsin x)2の冪級数展開を世界で初めて計算している。また、同年に大阪の鎌田俊清もarcsin(x), sin(x)の冪級数展開を求めた。
建部賢弘の弟子中根元圭は天文学の洋学による知識の必要性を説いて、当時キリスト教排除においてなされた洋書の輸入禁制を緩めることを、その主人である将軍徳川吉宗に進言したといわれ、ついに実行されるに至った。それによって、西洋の天文暦算を解いた清朝の梅文鼎の『暦算全書』や『数理精蘊』などの書が伝わり、暦学者や算学者の目にとまった。これらの書により、西洋数学の諸結果がもたらされ、対数や三角法などあらたな分野に興味が開かれるようになった。
関孝和以後は荒木村英がその伝を継ぎ、さらにその弟子松永良弼がその流派を「関流」と称えるようになって、以降関流の算法は、他流派を抜いて大いに発達し、数学界にその権威を誇った。松永良弼は関孝和や建部賢弘の研究を推し拡め、親友久留島義太の影響を受けながら、
円理
極数術 - 極大極小論
整数術 - ピタゴラス数など整数を作る問題
変数術 - 順列・組合せ数学
廉術(逐索) - 帰納的な考えによる公式の導出法
などを確立させた。久留島義太は、関流の門下ではなかったが、その天才によって独学で算術に達し、のち関流の中根元圭に才能を見出されてからは関流の数学を研究した。極数術、平方零約術(数の平方根の近似分数を求める方法)、円理や方陣の新研究など様々な独創あるいは工夫を編み出した。また枝葉の結果ではあるがオイラー関数やラプラス展開など西洋と同様のものを先駆けて出している。
中根・久留島・松永の三士に学んだ山路主住は、それらの伝を一身に集め、各家の業をまとめて流派たる関流を樹立した。弟子の教育に優れて、優秀な数学者を輩出した。その弟子有馬頼ゆきは久留米の藩主でありながら数学に優れ数々の研究を遺している。また、関流の秘術が流派内に秘されて世にひろめられないことを嘆き、『拾璣算法』において点竄術や円理の諸公式など、それまで関流の重要機密であった高等な算法の数々の問題と結果を刊行して世に公表した。同じく山路の弟子安島直円は、円理の伝授を受けるに先立って円理の新発明をなし、師の山路を甚だ驚かせた。その新発明とは、今でいう積分法の思想を以って円の形を長方形の集まりと考え、円あるいは弧背などの曲線の面積を求める術(計算法)を導き出す方法である。またその方法を用いて、円柱に円柱を貫いた十字の形や、円柱から球を穿ち去った形の体積を求めるというような問題を初めて解き成した。この解法に安島は綴術を重ねて用いる二次綴術(二重積分)を用いる。積分思想と二次綴術と、ここにおいて安島は関孝和以降、円理に第二の革新をもたらしたのであった。さらに彼は、綴術においてある数の数乗根を得る公式を得たり、独自に対数表の作成法を編み出したり、円や角形の接形問題に諸々の結果を得るなど数々の研究を遺した。世間の数学界では、このころすでに遺題継承の風習は廃れてきていたが、一方、神社や仏閣に数学の問題を載せた額を掲げる、算額奉納の風習が盛んとなり、数学問題の競争は衰えることがなかった。安島の親友であり同じく山路の弟子の藤田貞資(定資とも書く)は教育にすぐれ、問題集『精要算法』を著して世に名を轟かせた。このころ世間の算術は、遺題継承、算額奉納などによって流行がきわまりながらも、一般でおこなわれる算術は、実用を遠く離れた問題や解く甲斐のない無闇に珍しかったり難しいだけの問題など、その内容の粗さが目立つようになってきた。それを批判したのがこの著で、その凡例に記された「今の算数に用の用あり、無用の用あり、無用の無用あり。」という一言がそれを言い当てている。それぞれ、実用的で有益なもの、実用的でないが有益なもの、何の益にもならないものを言っているが、この書は「無用の無用」を排除するために良問のみを集めたとし、これがひとたび刊行されるや、良質な教科書として、数学者の間で一世を風靡した。 藤田の研究に変商術がある。これは、二つ以上の解(解のことを商という)をもつ方程式において、答えとはならない方の解に意義を与え、その解が答えとなるような問題条件や図形などを示して、問題の変化を探る研究である。
東北の会田安明は、藤田貞資の門に入ろうとしたが、自身が掲げた算額を藤田から批判されたのをきっかけに言い争いを起こして対立し、ついに独自の一派『最上流』(郷土山形の最上川にちなむ。音読みでサイジョウリュウ。主に東北地方で栄えた。)を立ち上げ、関流に対抗した。しかも若い頃の会田は、関流の算法や点竄術を知らずして、独自に天生法という点竄術と同等の術を発明していた。また生涯で二百冊もの伝書(流派用の教科書)や論文を成しており、その遺稿には見るべきものが少なくない。
江戸後期から明治にかけて[編集]
江戸後期に最も輝いた和算であったが、明治もしばらく経つと、ついに衰退へと向かうこととなる。
安島直円の門下から、教育に優れた日下誠が出ると、その門からもとても多くの秀才が輩出された。 和田寧は、安島の積分思想を円にとどまらず、角形や立体など様々な図形へと多岐におよばせて、豁術(積分法)を創出し、また、この術のための便利として円理表(積分の公式集)を作成した。ここにおいて和田は円理に第三の革命をもたらした。極数術(極大極小論)の研究では、関孝和の創出以来、あかされていなかった適尽法の理論を解き明かして、従来の方法を簡便にしさらにその応用もより複雑で幅広いものへと拡げたのであった(これは今でいえば微分法による導関数の導出に等しい)。また、新奇な問題として、円や角などの図形が他の図形の上でころがったときの軌跡について論じはじめ、これを皮切りに以後この問題は盛んに行なわれた。和田の名はたちまち算家たちの間に広まり、既に数学で名を挙げているはずの有力者たちが、その業を授かるために入門しにくるほどであった。
同じく日下誠の門下の内田五観は十一のころすでにその才能をあらわし、わずか十八にして関流の宗統を継いだ秀才であった。洋学を高野長英に学び、天文や測量、地理にも優れて瑪得瑪弟加塾(マテマテカ塾)という塾を開いて教え多くの門下生を抱えた。天文関係では明治期に大学出仕天文暦道御用係や星学局御用係として、太陽暦への改暦事業にも務めた。その名は各地に轟き、当時の算家たちに影響およぼすことが多かった。長谷川寛もまた日下誠の門弟であったが、長谷川派として独立の一派を築き(一説には、わけあって関流から破門されたとも言う)、殊に教育の方面によく従事した。その著『算法新書』は、そろばんの初歩から天元、点竄、綴術、さらには和田の円理までをも惜しみなく載せて当時の算法を網羅し丁寧に解義した入門書であった。その他様々な算術の入門書を著して子弟を導き、その二代目長谷川弘においても図形の公式集や豁術の解義書などさまざまに数学の教育活動が行なわれた。また、長谷川寛は新たに極形術と変形術というものを発明している。極形術は、扱いづらい数や図形を扱いやすいもの(極形という。たとえば長方形や菱形なら正方形に、三角形なら正三角形や直角二等辺三角形に、大きさが等しくないものは等しいものに)に置き換えて、問題を解きやすくするという術であり、変形術は図形の形を引き伸ばしたり回したりすることで形を変えて問題を解きやすくする術である。これらによって、図形問題の解法は大いに簡略化されるかに見えたが、極形術にてはある問題においては正しく解けずに誤った答えが導かれると言う事態が起こった。いくらかこれに他の数学者たちから批判の声があがったものの、ついに修正改良されることを得なかった。他方、内田五観の門人法道寺善もまた形を変えて解くという同様の考えにより、接円の問題などにおいて円を直線に変えて解く、別の方法を編み出している(反転法に相当する)。
関の時代においては数学の担い手は、特に都市部の、幕臣や侍など身分の高い者が殆どであったが、江戸後期になると諸地方から、商家や農家などからも数学に達した者が多くあらわれて、低い身分や遠い地方の人でも高度な数学をたしなむ者が増えた。萩原信芳や剣持章行などがそれである。この要因のひとつとして、遊歴算家がある。日本の各地を歩きまわり、行く先々で数学の教授を行った数学者であり、主に山口和や剣持章行がいる。また通信教育もよく行われていて、これらは地方に数学をひろめることに大きな功があった。
明治時代以後[編集]
明治時代に入ると、西洋数学が本格的に導入される。「和算」という語は西洋数学を表す「洋算」に対する日本数学の名でこの頃生まれた。海軍では西洋技術の習得のために洋算が教え込まれ、また、内田五観や福田理軒といった和洋に通じる算家が測量や天文などの技術とともに門弟に教えていた。西洋数学の台頭、その象徴的出来事は1872年(明治5年)の学制発布の際、時の政府が「和算を廃止し、洋算を専ら用ふるべし。」と決断したことである。しかし、初等教育における筆算さえまともに教えられる教師が不足していたために翌年、止むを得なく珠算のみ復活した。明治の初めの西洋数学導入は、技術を支える道具の輸入という面が強く、初期の「洋算家」には技術者など数学の専門家とは言えない者も多かった。さりながら、このころより和算は少しずつ衰退の歩みをみせていくこととなる。和算が衰えることと洋算が振るわないことに憂いて柳楢悦と神田孝平は1877年(明治10年)、日本数学会の前身、東京数学会社を設立し、和算家洋算家問わず有力な算家をあつめて「数学」の振興に力をそそいだ。まだ和算が有力な時期であって、これには洋算家も和算家も多数参加しているが、むしろ和算家の方が数学力は優れた者が多かったという。そして、この頃になっても未だ、新たな和算書が出版されている。時がたつと次第次第と洋算は和算の勢力を抑えていき、和算の力も虫の息となりかけていた。和算への批判は「応用に役に立たない」というものが主流であった。本格的な西洋数学への移行は1884年(明治17年)、東京数学会社が日本数学物理学会に改組された頃である。
本格的な西洋数学導入までの間、和算(又は和算家)は応用面においても近代化を支えた。1873年(明治6年)の太陽暦採用の主役を務めたのは関流の有力な和算家、内田五観であった。福田理軒のように測量で活躍したものもあった。幕末・明治初めの技術官僚小野友五郎も和算家であり、咸臨丸の航路の計算には和算を用いたという。また、大工のための作図技術である規矩術は幕末期より和算の応用によって理論的に整備されたが、明治以降も引き続き研究が進み、しかも1887年(明治20年)頃のものでも和算の影響が濃厚である。明治の初等教育でも和算家は活躍し続け、現在の算数の鶴亀算などはその名残りだという。
和算研究[編集]
明治に入り、和算廃止洋算専用と発布され、和算が存亡の危機に立たされるようになると、和算が忘れさられるのを恐れて和算史研究が起こった。遠藤利貞は、1877年(明治10年)に東京数学会社が設立された年より和算史研究を始め、20年かけて1896年(明治29年)、『大日本数学史』を出版する。これを受けて菊池大麓は和算取調所を設け、荻原禎助、岡本則録、三上義夫(前ふたりは元々和算家である)などがこれに努めた。1911年(明治44年)に東北大学が設置されると林鶴一もまた和算書の収集研究を行い、没後『和算研究集録』としてまとめられた。
藤原松三郎もまた、林鶴一の没を受けて晩年和算史研究に努めた。1940年(昭和15年)には、紀元2600年記念事業『明治前日本科学史』の企画の中で『明治前日本数学史』の編纂が藤原松三郎の手によって行われ、藤原の没後、ようやく1954年(昭和29年)にこれが出版された。
藤原松三郎著『日本数学史要』によると、最後の和算家および和算書とみられるのは東北の熊谷藤吉とその著『和算開式法』であるという。この書は藤原松三郎が序文を担い、1946年(昭和21年)和算の最後を飾った。
和算の性格[編集]
積分を多く用いて円理の問題を巧みに解いた一方、微分の概念は和算ではあまりはっきりと立ち現れてこない。これは、和算が「関数」および「グラフ」の概念を欠いていたことが一つの理由であろう。ただ、代数方程式の重解の考察にからんで多項式の微分が関孝和以来扱われている。しかし、関による定義は、f(x+e)をeについて整理したときの一次の項で、接線との関係は全く念頭にない。建部賢弘はこれを多項式関数の極値問題に応用している。彼は、数値的に微小な差分をとった時の主要項と、関の定義による導多項式が一致していることには気がついていたようである。また、久留島義太は極値問題を級数展開の視点で考察し、微分法の一歩手前まで来ている。同じ脈絡で、和田寧はフェルマーの方法、すなわち (f(x + e/2) - f(x - e/2))/e を計算し、e = 0 とする方法を発表している。
微分が発達しなかった為、和算では微積分の基本定理がなかった。したがって、微分の逆で積分を計算することも、部分積分を利用することもできなかった。複雑な関数の積分は、冪級数展開と級数の和の公式を巧みに用いた。
和算の中心的な手法は数値計算的な代数であって、特に関孝和や建部の頃は、図形の問題はピタゴラスの定理など、簡単な関係を用いて代数の問題に直して処理していた。算額に見られるような、互いに接する円や楕円の関係を求める問題は、松永良弼の頃から盛んになる。次の世代の安島直円は、三斜三円術(マルファッティの定理)などを発見し、これらの問題の系統的な解法の発展に寄与した。幕末には法導寺善が反転で円を直線に写して簡略化する手法を導入した。近年、和算で発見された幾何の美しい定理は(趣味的な観点からではあるが)注目を浴び、日本国外にも広く紹介されている。ただし、問題の処理にあたって代数計算や数値計算に頼る傾向が最後まで残った。また、作図問題などはあまり扱われず、いわんやユークリッド流の公理的な幾何学などは全く受け入れられなかった。幕末、海軍伝習所で教えた外国人教官の追憶によると、日本人は代数の理解は早かったが、幾何は中々進まなかったという。
和算には文化的相違より、西洋数学からみると変わった概念も多くあった。たとえば関孝和は実数解のない方程式を解くのに、西洋の虚数の概念の導入とは別に、問題の係数を置き換えて解の得ることのできる範囲(極数という)を調べる「適尽法」という方法をとった(これは後、方程式解の極大極小の理論へと発展する)。幕末の長谷川寛は極形術や変形術という新たな幾何の理論を発明した。極形術は、扱いづらい数や図形を扱いやすいもの(極形という。たとえば長方形やひし形なら正方形に、三角形なら正三角形や二等辺直角三角形に、大きさが等しくないものは等しいものに、など)に置き換えて、問題を解きやすくするという術であり、変形術は図形の形を引き伸ばしたり回したりすることで形を変えて問題を解きやすくする術であった。これらは和算の新たな境地を見出した。しかし、その後、明治に入って和算が衰退したことによりこれらの研究があまり進まず、どの問題で適用できどのような方法をとれば正しい解が得られるのかなどといったことが明らかにならず、その理論性が固まり得ないまま、これらの術は滅びてしまった。
和算における多くの成果は各流派の中で秘伝とされ続けてきた(実際にどの程度秘密が守られたかは不明)。しかし、関流算術を学んだ久留米藩主・有馬頼徸は1769年(明和6年)に出版した著書『拾璣算法』において関流の秘伝を公開し、和算文化の向上に大きな貢献を果たした。また、幕末の長谷川寛監修、千葉胤秀編の『算法新書』(1830年(天保元年))では、初歩から最先端の結果までを丁寧に解説した。
日本で数学の専門家を輩出し得た社会的背景としては、貨幣経済の興隆の他、国絵図作成、新田開発などのための測量に対する需要があると推測される。また、暦学にも高度な数学が必要であった。関孝和は仕えていた甲斐国甲府藩における国絵図(甲斐国絵図)の作成に参加し、(実現はしなかったものの)改暦の準備のために授時暦の研究をしている。特に後者は、関孝和の数学研究の重要な動機である、との説もある。
算木とそろばん[編集]
算木を用いた数の表記
和算で用いられる道具として算木とそろばんが挙げられる。いずれも『算法統宗』に使用法が紹介されている。また、『塵劫記』にはそろばんの使用法が絵入りで丁寧に解説されている。
そろばんは会計等広く用いられたのに対し、算木は専ら和算家によって、天元術(中国の代数方程式の理論)などの計算に用いられた。算木計算では算盤(さんばん)と呼ばれる盤と数を表す算木を用いる。算盤では碁盤状に升目が敷かれた布や板であり、横の目が一、十、百、千、万といった桁数を表し、縦の目は商(答え)、実(定数項)、法 (x)、廉 (x2)、隅 (x3)、三乗 (x4)…と代数方程式の解および各係数を表し(ただし流派によっては廉以下を初廉(x2)、次廉(x3)、三廉(x4)…とし、隅を最大の次数とする)、各升目に置かれた算木を並べ替えることで代数方程式を解いていく。
この算木による計算によれば、理論上は一元方程式なら何次でも解けるものであるが、場所をとったり、計算途中に算木を一本でも崩したらすべて台無しになる、次数が大きくなるほど計算が煩雑になるなどして、扱いづらさがあった。 よって、中・後期ごろには、算木の運用の煩わしさを嫌って、方程式をも算木ではなくそろばんで計算しようとする研究が盛んになった。著しいものは川井久徳の著書『開式新法』がある。彼は、従来それぞれ独立していた各次数の方程式のそろばん解法(いわゆる解の公式)の一括を試みて、何次の一元方程式でもことごとく、そろばんによって速やかに解く一貫の方法を編み出した。
古くは加減乗除のような算数も算木・算盤によって行われていたが、そろばんが現れてからは、算木・算盤は数学で方程式の解を求めることのみに扱われるようになった。
算額[編集]
奈良市円満寺に残る算額
詳細は「算額」を参照
算額(さんがく)とは額や絵馬に数学の問題や解法を記して、神社や仏閣に奉納したものである。平面図形に関する問題の算額が多い。数学者のみならず、一般の数学愛好家も数多く奉納している。
算額は数学の問題が解けたことを神仏に感謝し、益々勉学に励むことを祈願して奉納されたと言われる。やがて、人の集まる神社仏閣を数学の発表の場として、難問や問題だけを書いて解答を付けずに奉納する者も現れ、その問題を見て解答を算額にしてまた奉納するといったことも行われた。算額奉納の習慣は世界に例を見ず、日本独自の文化である。
1997年(平成9年)に行われた調査結果によると、日本全国に975面の算額が現存している(『例題で知る日本の数学と算額』森北出版)。これら現存する算額で最も古いものは栃木県佐野市にある星宮神社にあり、1657年(明暦3年)に掲げられたとされる。新しいものでは、昭和年づけのものが幾つか現存している。明治以降、洋算化の進む中で和算をたしなみ続けた人々がいたが、この風習はそういった和算家により昭和初期まで続けられた。
算額を扱った小説として遠藤寛子『算法少女』がある。
近年、算額の価値を見直す動きが各地で見られ、一部では算額を神社仏閣に奉納する人びとも増えている。これは直接和算の伝統を受け継いだものではないことが多いが、いずれにしても日本人の数学好きをあらわす文化事象として興味深い。
金王八幡宮(東京都渋谷区)の算額。安政6年(1859年)奉納。


金王八幡宮(東京都渋谷区)の算額。元治元年(1864年)奉納。http://ja.wikipedia.org/wiki/%E5%92%8C%E7%AE%97

再生核研究所声明202(2015.2.2)ゼロ除算100/0=0,0/0=0誕生1周年記念声明 ― ゼロ除算の現状と期待
ゼロ除算の発見、経過、解説などについては、結構な文献に記録されてきた:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9)ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25) Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185: The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1 ― 
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
再生核研究所声明199(2015.1.15)世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算100/0=0,0/0=0誕生1周年記念日に当たり、概観して共同研究者と共に夢を明るく 楽しく描きたい。まずは、ゼロ除算の意義を復習しておこう:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 ゼロで   何でも割れば ゼロ  z/0=0  である をもたらしたこと。
2)ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に 非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な結果は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる という定理 である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。
11)ゼロ除算が可能であるか否かの議論について:
現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。しかしながら、出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかという未知の分野が望めて、大いに期待できる世界が拓かれる。
12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として表していることである。
ゼロ除算は 既に数学的に確定され、その意義も既に明らかであると考えられるが、声明199にも述べられているように、ゼロ除算が不可能であるとの世の常識、学術書、数学は 数学者の勝手な解釈による歴史的な間違いに当たる ことをしっかりと理解させ、世の教育書、学術書の変更を求めていきたい。― 誰が、真実を知って、偽りを教え、言い続けられるだろうか。― 教育に於ける除算、乗算の演算の意味を 道脇方式で回復させ、新しい結果 ゼロ除算を世に知らしめ、世の常識とさせたい。それは ちょうど天動説が地動説に変わったように 世界史の確かな進化と言えるだろう。
ゼロ除算の研究の進展は、数学的には 佐藤超関数の理論からの展開、発展、 物理学的には ゼロ除算の物理法則の解釈や、衝突現象における山根の面白い解釈の究明 などに興味が持たれる。しかしながら、ゼロ除算の本質的な解明とは、Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の自然な現象として受け入れられることである。数学では、その強力な不連続性を自然なものとして説明され、解明されることが求められる。
以 上

再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
正確に次のように公開して複素解析とゼロ除算の研究を開始した:
特異点解明の歩み100/0=0,0/0=0 関係者:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。宜しくお願い致します。 添付 物語を続けたい。敬具 齋藤三郎
2014.4.1.11:10
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6月、帰国後、気に成っていた、金子晃先生の 30年以上前に購入した超函数入門の本に 極めて面白い記述があり、佐藤超関数とゼロ除算の面白い関係が出てきた。さらに 特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられているが、面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていることが分かった。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
現在まで、添付21ページの論文原稿について 慎重に総合的に検討してきた。
そこで、問題の核心、ゼロ除算の発展の基礎は、次の論点に有るように感じられてきた:
We can find many applicable examples, for example, as a typical example in A. Kaneko (\cite{kaneko}, page 11) in the theory of hyperfunction theory: for non-integers $\lambda$, we have
\begin{equation}
x_+^{\lambda} = \left[ \frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}\right] =\frac{1}{2i \sin \pi \lambda}\{(-x + i0)^{\lambda}- (-x - i0)^{\lambda}\}
\end{equation}
where the left hand side is a Sato hyperfunction and the middle term is the representative analytic function whose meaning is given by the last term. For an integer $n$, Kaneko derived that
\begin{equation}
x_+^{n} = \left[- \frac{z^n}{2\pi i} \log (-z) \right],
\end{equation}
where $\log$ is a principal value: $ \{ - \pi < \arg z < +\pi \}$. Kaneko stated there that by taking a finite part of the Laurent expansion, the formula is derived.
Indeed, we have the expansion, for around $ n$, integer
$$
\frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}
$$
\begin{equation}
= \frac{- z^n}{2\pi i} \frac{1}{\lambda -n} - \frac{z^n}{2\pi i} \log (-z )
  • \left( \frac{\log^2 (-z) z^n}{2\pi i\cdot 2!} + \frac{\pi z^n}{2i\cdot 3!}
\right)(\lambda - n) + ...
\end{equation}
(\cite{kaneko}, page 220).
By our Theorem 2, however, we can derive this result (4.3) from the Laurant expansion (4.4), immediately.
上記ローラン展開で、\lambda に n を代入したのが ちょうど n に対する佐藤の超関数になっている。それは、ゼロ除算に言う、 孤立特異点における解析関数の極における確定値である。これはゼロ除算そのものと殆ど等価であるから、ローラン展開に \lambda = n を代入した意味を、上記の佐藤超関数の理論は述べているので 上記の結果を分析すれば、ゼロ除算のある本質を捉えることができるのではないかと考えられる。
佐藤超関数は 日本で生まれた、基本的な数学で 優秀な人材を有している。また、それだけ高級、高度化しているが、このような初歩的、基本的な問題に関係がある事が明らかになってきた。そこで、佐藤超関数論の専門家の方々の研究参加が望まれ、期待される。また、関係者の助言やご意見をお願いしたい。
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として示していることである。
以 上


再生核研究所声明199(2015.1.15) 世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算は 西暦628年インドでゼロが文献に記録されて以来、問題とされてきた。ゼロ除算とは、ゼロで割ることを考えることである。これは数学の基本である、四則演算、加法、減法、乗法、除法において、除法以外は何時でも自由にできるのに、除法の場合だけ、ゼロで割ることができないという理由で、さらに物理法則を表す多くの公式にゼロ除算が自然に現れていることもあって、世界各地で、今でも絶えず、問題にされていると考えられる。― 小学生でも どうしてゼロで割れないのかと毎年、いろいろな教室で問われ続いているのではないだろうか.
これについては、近代数学が確立された以後でも、何百年を越えて 永い間の定説として、ゼロ除算は 不可能であり、ゼロで割ってはいけないことは、初等教育から、中等、高校、大学そして学術界、すなわち、世界の全ての文献と理解はそうなっている。変えることのできない不変的な法則のように理解されていると考えられる。
しかるに2014年2月2日 ゼロ除算は、可能であり、ゼロで割ればゼロであることが、偶然発見された。その後の経過、背景や意味付け等を纏めてきた:
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)― 
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
ところが、気づいてみると、ゼロ除算は当たり前なのに、数学者たちが勝手に、割り算は掛け算の逆と思い込み、ゼロ除算は不可能であると 絶対的な真理であるかのように 烙印を押して、世界の人々も盲信してきた。それで、物理学者が そのために基本的な公式における曖昧さに困ってきた事情は ニュートンの万有引力の法則にさえ見られる。
さらに、誠に奇妙なことには、除算はその言葉が表すように、掛算とは無関係に考えられ、日本ばかりではなく西欧でも中世から除算は引き算の繰り返しで計算されてきた、古い、永い伝統がある。その考え方から、ゼロ除算は自明であると道脇裕氏と道脇愛羽さん6歳が(四則演算を学習して間もないときに)理解を示した ― ゼロ除算は除算の固有の意味から自明であり、ゼロで割ればゼロであるは数学的な真実であると言える(声明194)。数学、物理、文化への影響も甚大であると考えられる。
数学者は 数学の自由な精神で 好きなことで、考えられることは何でも考え、不可能を可能にし、分からないことを究め、真智を求めるのが 数学者の精神である。非ユークリッド幾何学の出現で 絶対は変わり得ることを学び、いろいろな考え方があることを学んできたはずである。そのような観点から ゼロ除算の解明の遅れは 奇妙な歴史的な事件である と言えるのではないだろうか。
これは、数学を超えた、真実であり、ゼロ除算は不可能であるとの 世の理解は間違っている と言える。そこで、真実を世界に広めて、人類の歴史を進化させるべきであると考える。特に声明176と声明185を参照。ゼロ除算は 堪らなく楽しい 新世界 を拓いていると考える。
以 上


0 件のコメント:

コメントを投稿