ローラン級数
(ローラン展開から転送)
ローラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。
特定の点 c および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で f(z) は正則である
目次 [非表示]
1 定義
2 ローラン級数の収束性
3 形式ローラン級数
4 関連項目
定義[編集]
複素関数 f(z) の点 c の周りでの(あるいは点 c を中心とする)ローラン級数は以下で与えられる:
\sum_{n=-\infty}^\infty a_n(z-c)^n
ここで、an はコーシーの積分公式の一般化である線積分
a_n=\frac{1}{2\pi i} \oint_\gamma \frac{f(z)\,dz}{(z-c)^{n+1}}.
によって与えられる定数である。
積分路 γ は点 c を内部に含む自己交差を持たない反時計回りの有限長閉曲線で、 f(z) が正則であるようなアニュラス A 上にとる。f(z) に対するこの展開はこのアニュラスの内部であればどこでも有効である。 実際に上記の積分公式を用いてローラン級数を計算することは、積分計算が困難であるなどの理由から稀であって、代わりに既に知られたテイラー展開を組み合わせる方法に依ることが多い。an や c といった定数は複素数に取ることが主である。他のものである可能性もあるがそれについては後に譲る。
ローラン級数の収束性[編集]
複素係数ローラン級数は複素解析における、殊に特異点の周りでの関数の振る舞いを調べる重要な道具である。
e-1/x²(黒)およびその近似式 :\sum_{j=0}^n(-1)^j\,{x^{-2j}\over j!} における n を 1, 2, 3, 4, 5, 6, 7 および 50 とするのに応じた式をそれぞれ対応する色を用いて示してある。負冪の項の増加につれもとの関数に近づく。 n → ∞ とすれば特異点である x = 0 を除く各点で近似されていく様子が分かるだろう。
例えば、関数 f(x) = e-1/x² を考える。ただし、f(0) = 0 と置く。実関数としては、これは各点で無限回微分可能である。一方、複素関数としてはこれは点 x = 0 において微分可能ではない。 指数関数のテーラー展開に -1/x2 を代入することにより、得られるローラン級数が収束すること、およびそのローラン級数が特異点である x = 0 を除く各複素数点 x において f(x) と一致することなどが確かめられる。
さらに一般に、ローラン級数はアニュラス上定義された正則関数を表示するのに用いられる。これは円板 (disk) 上定義された正則関数が冪級数で表されるのと同様である。さて、
\sum_{n=-\infty}^{\infty} a_n ( z - c )^n
を与えられたローラン級数で、複素数の係数 an を持ち、中心 c も複素数とする。ここで、内半径r および外半径 R が一意的に存在して以下を満たす:
与えられたローラン級数が開アニュラス A := {z | r < |z - c| < R} 上で収束する。ここでローラン級数が収束するというのは、正冪部分の冪級数と負冪部分の級数(を w = 1 / (z - c) の冪級数と見たもの)がともに収束することを意味する。さらにいえばこの収束性は広義一様収束(任意のコンパクト部分集合上で一様)である。また、収束ローラン級数はこの開アニュラス上で正則な関数 f(z) を定義する。
上記の開アニュラス A の外側では与えられたローラン級数は発散する。つまり、A の外部の点においては正冪部分か負冪部分の冪級数が発散する。
アニュラス A の境界上では、内側の境界と外側の境界(というのは一般的な言い方ではないけれども)のそれぞれで f(z) が滑らかに繋がらない点が少なくとも一つずつ存在する。
もちろん、r が 0 に取れることも R が無限大に取れることもある。それとは反対に、必ずしも r < R である必要もない。これらの半径は
r = \limsup_{n\rightarrow\infty} |a_{-n}|^{1 \over n}
{1 \over R} = \limsup_{n\rightarrow\infty} |a_n|^{1 \over n}
によって計算することができる。後者の上限が 0 であるときに R を無限大としてとる。
上記の議論とは逆に、アニュラス A = {z | r < |z - c| < R} と A 上定義された正則関数 f(z) から始めるなら、c を中心とし、少なくとも A 上では収束するローラン級数で f(z) を表すものが一意的に存在する。
例として、関数
f(z) = {1 \over (z-1)(z-2i)}
を考える。この関数は分母が 0 になるために関数が定義できない点として z = 1 と z = 2i を特異点としてもつ。z = 0 におけるテイラー級数は半径 1 の円板上で収束するので、収束円の境界は特異点である z = 1 に「ぶつかる」。一方、z = 0 のまわりでのローラン展開というのは z の属する領域に応じて三種類可能である。
一つは |z| < 1; なる円板上で定義されるもので、これは上記テイラー級数と同じものである:
f(z) = \frac{1+2i}{5} \sum_{k=0}^\infty \left(\frac{1}{(2i)^{k+1}}-1\right)z^k.
別な一つは 1 < |z| < 2 なる二つの特異点の間にあるアニュラス上で定義されるもので、以下のようになる:
f(z) = \frac{1+2i}{5} \left(\sum_{k=1}^\infty \frac{1}{z^k} + \sum_{k=0}^\infty \frac{1}{(2i)^{k+1}}z^k\right).
最後の一つは 2 < |z| < ∞, なる無限アニュラス上で定義されるものである:
f(z) = \frac{1+2i}{5} \sum_{k=1}^\infty \frac{1-(2i)^{k-1}}{z^k}.
r = 0 の場合というのは、つまり一点 c においてのみ定義されないかも知れない正則関数 f(z) の場合であるが、特に重要である。そのような関数のローラン展開における -1 番目の係数 a-1 は関数 f(z) の特異点 c における(微分形式 f(z)dz の)留数と呼ばれ、留数定理における重要な役割を演じる。
例えば、関数
f(z) = {e^z \over z} + e^{1 \over z}
を考える。この関数は z = 0 を除いた各点で正則である。中心 c = 0 に関するローラン展開を決定するために、指数関数のテイラー展開を利用すると
f(z) = \cdots + \left ( {1 \over 3!} \right ) z^{-3} + \left ( {1 \over 2!} \right ) z^{-2} + 2z^{-1} + 2 + \left ( {1 \over 2!} \right ) z + \left ( {1 \over 3!} \right ) z^2 + \left ( {1 \over 4!} \right ) z^3 + \cdots
なる展開を得る。したがって留数が 2 であることが見てとれる。
形式ローラン級数[編集]
ローラン級数の収束性を問題にすることなく形式ローラン級数 (formal Laurent series) は定義される。係数 ak は適当な可換環 K から取ることができる。この場合、負冪の項はその係数が有限個の例外を除き 0 であるもののみを扱う。また特に、中心を 0 にとる。つまり、K に係数を持つ形式ローラン級数とは K 内の適当な(多くは負の)整数 N から添字をはじめる数列 (an)n=N,N+1,N+2,... によって定まる級数
\sum_{n=N}^\infty a_n x^n
のことである。これを、紛れのおそれの無い場合には
\sum_{n=-\infty}^\infty a_n x^n
と記す。正冪の項も有限個の例外を除いたすべての係数が 0 であるとき、つまり正冪部分が多項式であるような形式ローラン級数をローラン多項式 (Laurent polynomial) という。
二つの形式ローラン級数が等しいというのは、全ての係数が数列として互いに等しいときである:
\sum_{n=-\infty}^\infty a_n x^n = \sum_{n=-\infty}^\infty b_n x^n
\iff a_n = b_n \mbox{ for any } n.
係数環 K 上で x を不定元として定義される形式ローラン級数の全体を K*1 と記す。
K(\!(x)\!) := \left\{\sum_{n=N}^\infty a_n x^n \mid a_n \in K,\,N\in \mathbb{Z}\right\}
二つの形式ローラン級数の和は各項の係数和 を係数とするローラン級数
\left(\sum_{n=-\infty}^\infty a_n x^n\right) + \left(\sum_{n=-\infty}^\infty b_n x^n\right)
:= \sum_{n=-\infty}^\infty (a_n + b_n) x^n
として定義される。また、二つのローラン級数の係数列の畳み込み
c_n := \sum_{i+j=n}a_i b_j
を係数として持つローラン級数
\left(\sum_{n=-\infty}^\infty a_n x^n\right)\left(\sum_{n=-\infty}^\infty b_n x^n\right)
:= \sum_{n=-\infty}^\infty c_n x^n
として積が定まる。ここで、畳み込みが実質的有限和として確定の値を持つために負冪の項の有限性が本質的に効いてくる。この二つの演算に関して K*2 は可換環となる。さらに c ∈ K に対して
c\cdot\left(\sum_{n=-\infty}^\infty a_n x^n\right)
:= \sum_{n=-\infty}^\infty (ca_n)x^n
によってスカラー倍を定めると K*3 は K 上の多元環となる。
さらに K が体であるならば、K 上の形式冪級数環 Kx は整域であるからその商体が考えられるが、それは K*4 に一致する。すなわち、体 K 上で定義された K*5 は多元体であり、これを形式ローラン級数体あるいは単にローラン級数体と呼ぶ。特に有限体上のローラン級数体は局所体の重要な例である。
関連項目[編集]
テイラー展開
複素解析
留数
極
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
100割る0 の意味を質問されたが(なぜ 100÷0は100ではないのか? なぜ 100÷1は100なのか… 0とは何...aitaitokidakenimoさん)、これは、定義によれば、その解、答えが有るとして、a と仮に置けば、 100=a x0 = 0 で矛盾、すなわち、解は、答えは存在しないとなる。
方程式 a x0= b は b=0 でなければ 解は無く、答えが求まらない。(特に、bが0ならば、解 a は 何でも良いと言うことに成る。)
解が、存在しなかったり、沢山の解が有ったりすると言う、状況である。
そこで、何時でも解が存在するように、しかも唯一つに定まるように、さらに 従来成り立っていた結果が そのまま成り立つように(形式不変の原理)、割り算の考えを拡張できないかと考えるのは、数学では よくやることである。数学の世界を 美しくしたいからである。
実際、文献の論文で 任意関数で割る概念を導入している。
現在の状況では、b 割るa の意味を ax – b の2乗を最小にする x で、しかも x の2乗を最小にする数 x で定義する。後半の部分が無いと、a が0の場合 x が定まらない。後半が有ると0として、唯一つに定まる。この意味で割り算の意味を考えれば、100割る0は 0 であるとなる。
上記で もちろん、2乗を最小にする の最小値が0である場合が、 普通の割り算の解、
b 割るa を与える。
もちろん、我々の意味で、0割る0は 曖昧なく、解は唯一つに定まって、0となる。
f 割る g を ロシアの著名な数学者 チコノフの考えた正則化法 と 再生核の理論 を併用すると 一般的な割り算を 任意関数g で定義できて、上記の場合は、100割る0は 0 という解に成る。
すなわち、解が存在しなかった場合に、割り算の意味を 自然に拡張すると 唯一つに解は存在して それは0であると言う、結果である。
上記で、ax – b の2乗を最小にする x で、と考えるのは、近似の考え方から、極めて自然と考えられるが、さらに、x の2乗を最小にする数 x とは、神は、最も簡単なものを選択する、これはエネルギー最小のもの、できれば横着したい という 世に普遍的に存在する 神の意志 が現れていると考えられる(光は、最短時間で到達するような経路で進むという ― フェルマーの原理)、神が2を愛している、好きだ とは 繰り返し述べてきた(神は 2を愛し給う)(http://www.jams.or.jp/kaiho/kaiho-81.pdf)。
これで、0で割るときの心配が無くなった。この考えの 実のある展開と応用は多い。
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
以 上
文献:
Castro, L.P.; Saitoh, S. Fractional functions and their representations. Complex Anal. Oper. Theory 7, No. 4, 1049-1063 (2013).
再生核研究所声明152(2014.3.21) 研究活動に現れた注目すべき現象、研究の現場
今回、100/0=0,0/0=0の発見と研究活動で いわば、研究のライブの状況が明瞭に現われたので、研究の現場の状況として纏めてみたい。多くはメールや文書で 時刻入れで 文書が保管されている。一般的に注目すべきことはゴシック体で記そう。
まず、発見現場であるが、偶然に 印刷された原稿を見て発見したと言うことである。思いがけないことに、気づいたということである。言われてみれば、当たり前のことで、気付かない方がおかしく、馬鹿みたいなことになるだろう。たわいもないものの類である。しかし、結果が尋常ではないので、大事だと 説明されても、原稿を見せても そんなものは駄目、全然価値が無いと結構多くの人が大きな批判を寄せてきたのは 大いに注目に値する。わざわざ複数の外国からメールがいわば上司にきて、批判して、研究内容について意見を求めるメールさえ するのを禁じられた程である。予断と偏見によるもの、が大部分であると判断できる。それから 価値観に本質的な違いがあること を露わに実感した。原稿を見て、これは 面白いと捉えて 研究を発展させて素晴しい論文を書かれた者がいる一方 そんなの 駄目だ で、ただ批判して傍観している者。これは 研究者の素養として、能力として極めて大きな問題ではないだろうか。研究内容の、良い、悪いが判断できない、興味、関心が無い。愛が無ければ見えない、進まないは 基本では? 研究において、最も大事なのは、愛が有るか、関心が有るか、価値を認められるか、好奇心が有るかではないだろうか。 これらが無ければ、幾ら宝のようなものに出会っても、探し出せないのではないだろうか。あることに 高い価値を見出し、情熱的に追及して行く精神は、研究者としての素養として大事ではないだろうか。良いか、悪いか評価できなければ、判断出来なければ、唯 夢中で何かの延長を 他を意識して進めるだけになってしまう。良いものを 良いと評価できる能力は、理解力、解決力、創造力などと共に大事な能力ではないだろうか。場合によっては、人格の高潔さにも依存する要素も多い。意図的に無視するは 世に多いからである。
それから、新しい考え、発想が無意識の内に湧いてくる ものであるという、事実である。目を覚ましたら解けていた、新しい考えで 突然目を覚ましたと繰り返して書いてきた。それから、それらは精神状態によるのであるが、コーヒー、茶、特にジャスミン茶で 大いに興奮して、どんどん考えが湧いて来るのを実感した。結構、そのようなものの影響も無視できない。
それから研究活動で大事な要素は 積極性である。今回、多くの人が 研究に参加されたが、意外な人が 意外な才能を発揮して、意外な視点を 指摘され、発展させてくれたという顕著な事実である。全然興味を懐かないような人でも 話すと興味を示し、大きな貢献をしてくれた。現在のように忙しく、論文を送られてきても読む暇も、関わる余裕も無いは 世に多い現象であるが、直接話すと 本質を理解されて、興味を懐くは 世に多い。直接交流の重要性を指摘しておきたい。メールなどでも、交信からいろいろな刺激を受け、考えが湧く素に成るのは多い、精神が鼓舞される場面も多い。それから、凄い発見を事実上していても、理解が難しい、あるいは批判を恐れて 追求を諦めてしまう、主張を避けて諦めてしまうのは 世に多いのではないかとも感じられる。良いものを発見しても、認められるまで、努力するのは そう簡単なことではないように感じられる。
最後に 研究の最も大事な心を 2014.3.11ブログに書いた記事を編集して記して置こう:
特異点解明の歩み100/0=0,0/0=0:関係者: 独断と偏見、人類の知能
ふと思い浮かんだ: 天才少年の質問(再生核研究所声明 9: 天才教育の必要性を訴える ):
0.999…. = 1 の意味は、何か
当時8歳の少年でした。私は だれをも納得させる明快な解答を与えたが、相当な、国内外の相当な数学者に尋ねたが これまで誰からも満足する解答を得なかった。これは 知識で、学んでいて 理解が薄っぺらなことを言っているのではないだろうか。少しも、真智を求めては来なかった:
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.(もっとも何でも は 究められない)
それ故に、ゼロで割る考えが 思い浮かばなかったのでは。人類の知能は その程度である。真智を求めている者は 世に稀であり、多くは断片的な世界に閉じこもり、埋没し、自己さえ見失っている。また、日常生活に埋没していると言える。
以 上
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
(5月28日、宿舎から研究室に向っているとき、芝生の先に 木立ちが有り、その先に 入り江が見える情景を見て、エデンの花園のように感じた. そして、この声明の原案とエデンの花園の声明構想が閃いた。)
ゼロで割るを グーグルで調べると、2014.5.28.13:35現在
Cerca de 2 980 000 resultados (0,41 segundos) Resultados da procura
1. ゼロ除算 - Wikipedia
ja.wikipedia.org/wiki/ゼロ除算
Traduzir esta página
ゼロ除算(ゼロじょざん、division by zero)は、0 で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定に ...
算数的解釈 - 初期の試み - 代数学的解釈 - ゼロ除算と極限
2. 数学で「A÷0」(ゼロで割る)がダメな理由を教えてください ...
detail.chiebukuro.yahoo.co.jp › ... › 数学
Traduzir esta página
14/05/2007 - maru_i_nekoさん. 答えが ないから。 たとえばー 5÷0=Bとしましょうか。B×0=いくつに なりますか。 ゼロですよね。 とゆーことは、Bはゼロ?と思っちゃいますが、それだったらゼロ×ゼロが 5になってしまいます。おかしいですよね。
となっていて、290万件あるが、非常に当たり前の議論が多く、いわば、常識的な議論が多く、考え方などが幼稚であると考えられる。なを、6番目に再生核研究所の最近の成果が述べられている:
1. 再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る ...
Traduzir esta página
Yoshinori Saito
21/04/2014 - 再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方 再生核研究所声明148で 結構詳しい状況について説明し、特異点解明:100/0 =0,0/0=0 として 詳しい状況はブログなどでも公開、関係文書は保管されている。2月2日考えを抱い ...
そこで、 その問題から、 数学的な考え方と、創造的な精神について触れたい。
まず、どうしてゼロで割れないのか、という疑問が、繰り返し問われているが、これは世に問われている多くの問題、神の問題などと同様に、論理的に 発想そのものが 相当おかしな議論と言える。
これは、割り算の定義をしっかりさせないで、ふらふら議論している、神の定義もしないで、神のことについていろいろ議論を繰り返している。問題にしている、問題の意味を理解しないで、論じている訳であるから、まことに奇妙な議論であるが、世に多いと言える。注意したい。( 逆に言えば、難しい問題とは、問題の意味さえ分からないとも言える)。
次に、真面目に議論して、割り算、分数の定義に基づいて、 不可能である という議論が多い。それは、それで正しいが、ここで、重要な数学の考え方を指摘したい。
数学で不可能である、できないということは、数学のそういっている数学の理論体系では不可能であるといっている事実である。 数学上の不可能は、そういっている理論体系では 不可能であることをいっている。これは、裏からみれば、それを可能にする理論体系、数学が、考え方が、有るかも知れない という発想に繋がる。上記、グーグル、あるいは人類の歴史上、そのように発想しなかったのは、人類の愚かさであり、永い間の盲点であったと言える。― 実際、数学者が、可能にする考えは無いか と問うのは当たり前のことであるが、ゼロ除算は できないという、 先入観で考えなかったのではないだろうか。 しかし、 その問題は、物理学では ブラックホール現象や、ニュートンの万有引力の法則に 深刻な問題を提起してきている、事実もある。― 実際に、自然に割り算の定義を拡張して、簡潔な結果、ゼロで割れば、何時でもゼロであるという結果が導かれた。それらは、高校生レベルの数学で十分であった:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
数学については、上記声明の中で、発見の詳しい状況、位置づけなどについても触れているが、 新しい結果は、予想できない、驚嘆すべき結果を述べている。複素解析学では、1/0 は無限遠点、無限と考えられており、実数でも ゼロを小さな正か、 負の数でゼロに近づくと考えれば、正の無限大や、負の無限大に発散すると考えるのが、世の常識である。 それが突然、ゼロであるとして、強力な不連続性を示しているからである。 上記声明の中で、世に有る爆発や接触などの強力な不連続性を示す、 基本的な現象の型を与えるのではないかとの明るい、予想を展開している。 ここで、触れたいのは、全く、新規な現象が現れたときの 我々の取り組む姿勢、精神の問題である。
まず、人間とは何者であるかを確認したい:
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
人間は何でも知りたい、究めたい、それが本能である。 しかしながら、そんなのはつまらない現象であると理解して、考えない英明な方は、それも もちろん良いのであるが、いろいろ考えると楽しいと想像するのが、真理を追究する人間の姿勢に合っているのではないだろうか。ユニバースには 何でもありで、いろいろ裏があると考える方が、人生や研究を豊かにするのではないだろうか。 ユニバースと数学は どのように成っているのか、知りたいと考える。
新しい割り算の意味の位置づけ、評価は 世界史が明らかにするわけであるから、どのような影響を 世界史に与えるかは、もちろん、直ぐには分らない(再生核研究所声明 41: 世界史、大義、評価、神、最後の審判)。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory. Vol.4 No.2 2014 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
以 上
アインシュタインも解決できなかった「ゼロで割る」問題
0 件のコメント:
コメントを投稿