2018年7月7日土曜日

Mathematics: A powerful tool for understanding the world

NEW !
テーマ:

Mathematics: A powerful tool for understanding the world

Dr Juan C. Meza, Division Director for the Division of Mathematical Sciences (DMS) at the National Science Foundation (NSF) reveals why mathematics is such a powerful tool for understanding the world around us

In the article, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”, the well-known physicist Eugene Wigner once wrote about the wide applicability of mathematics even beyond its own field. So, why is it that mathematics has proven such a powerful tool for understanding the world around us?
For many people, mathematics research often seems esoteric, but the results inspire new ways of thinking and commonly lead to novel applications. Here at the National Science Foundation’s (NSF) Division of Mathematical Sciences (DMS), we support research in mathematics and statistics, the research training of the next generation of mathematical scientists and a portfolio of national research institutes.

An unexpected outcome

One of the goals of DMS is to develop new mathematical theories, models and tools to help solve some of the most challenging problems in the physical, biological and life sciences. This research ultimately has a significant impact on the United States’ health, security and economy.
A clear example emerged last year. In 2017, the U.S. Food and Drug Administration approved two new magnetic resonance imaging (MRI) devices that dramatically speed up scanning of the body – between eight and 16 times faster than conventional methods.
Siemens’ technology (CS Cardiac Cine) reveals movies of the beating heart and GE’s technology (HyperSense) allows rapid 3-D imaging of the brain.
Both products make use of a mathematical technique known as compressed sensing, a breakthrough developed ten years earlier by NSF-supported mathematicians. While the underlying mathematics can be daunting, the idea is actually quite simple. The basis for this technique relies on the idea that many signals (audio, video, images) have a structure that we can take advantage of when they are first measured and then stored. By using mathematical algorithms, we can reconstruct images based on far fewer measurements than we had previously thought possible. One simple analogy is when we recognise a whole song by hearing just a few bars of the melody or recognise a picture from a few well-chosen features.
Using this technique, scanning is strikingly faster, resulting in patients spending much less time inside MRI machines. That’s especially important for paediatric patients, where time inside an MRI must be restricted. The speed-up also allows for lower costs per patient.
The benefits are only now becoming widespread, but it was DMS-funded basic research that led to the new MRI technologies. Compressed sensing highlights the benefits of interdisciplinary research, as researchers from three different mathematical fields – geometric analysis, statistics and computational math – and from astronomy came together to work on this problem. It has been one of the great successes in the mathematical community, with a societal impact that is only just beginning.

Driving US mathematics research

DMS is the largest supporter of mathematical sciences research in the United States and accounts for more than 60% of federally funded basic mathematics research, including studies in algebra, topology and geometric analysis, number theory, applied mathematics, analysis, combinatorics, probability and statistics, computational mathematics and mathematical biology. We also support conferences and workshops and a portfolio of national mathematical sciences research institutes.
DMS’ six Mathematical Sciences Research Institutes run programmes for the research community and have a long history of bringing mathematicians together from around the world to share their work, which often leads to new collaborations.
Some of the activities supported by the institutes include programmes to discuss challenges in the development of materials for quantum computing, machine learning applications for computer vision and data-driven methods for precision medicine to guide treatment decisions – all of which have deep mathematical questions at their heart.

Bridging disciplines

Another DMS guiding principle is collaboration with other science disciplines to develop new mathematics. For example, biology is now more quantitative than ever before because of new technologies like high-throughput, next-generation sequencers and high-resolution imaging and microscopy techniques. Such technologies have led to an abundance of new data for biologists to analyse, data that may answer fundamental biological questions, as well as raise new ones.
Building from that need is one of the most exciting activities emerging from DMS this year: a new partnership with the Simons Foundation – a private foundation that supports discovery-driven scientific research in mathematics and the basic sciences – to create four new Centers for Mathematics of Complex Biological Systems.
This $40 million programme is funded equally by NSF and the Simons Foundation and involves DMS and two other divisions in NSF’s Biological Sciences Directorate: Integrative Organismal Systems and Molecular and Cellular Biosciences.
The centres will apply mathematical approaches in the hopes of developing predictive frameworks for understanding the pathways from DNA within cells to organisms interacting in nature. Such findings have potential for both pure scientific discovery and for a wide range of applications, from agriculture to health. One of the defining characteristics of the centers will be the close and sustained collaborations between biologists and mathematical scientists leveraging their complementary expertise and diverse perspectives.
DMS programmes span a wide range of energy and security applications, as well. Some mathematicians and statisticians are working on developing mathematical models for modelling efficient and reliable electrical power grid systems, while others work on mathematical algorithms for detecting threats such as outbreaks of epidemics like severe acute respiratory syndrome (SARS). Yet others look for hidden patterns in large graphs (like the World Wide Web) that could indicate emerging threats. Mathematicians are even studying ways to help manage and mitigate the aftermath of natural disasters such as hurricanes.

The future of mathematics

In addition to basic research, DMS also places a strong emphasis on training the next generation of mathematicians and statisticians. Through research fellowships, we provide an opportunity for mathematical sciences doctoral students to participate in internships at national laboratories, in industry and at other approved facilities.
Our Mathematical Sciences Graduate Internship fellowship program is aimed at students who are interested in understanding the application of advanced mathematical and statistical techniques to real-world problems, regardless of whether the student plans to pursue an academic or non-academic career.
In 2017, we placed 40 graduate students from 38 universities in 10 national labs. All of the students were able to apply the theoretical coursework they had learned in school to real-world problems like improving computational meshes for simulations, deblurring images and machine learning.
Through the many such programmes and initiatives funded by DMS, new and exciting mathematics research is providing insights into some of the hardest challenges society is facing today, from understanding complex biology to deciphering the fundamental properties necessary to build quantum computers – and understanding their security implications.
While one cannot know where the next breakthrough in science or technology will emerge, mathematics will have been used to better understand or even predict it. Mathematics is essential to society and NSF’s Division of Mathematical Sciences is positioned to support the needed mathematics that will help realise that new and better future.https://www.openaccessgovernment.org/mathematics-a-powerful-tool-for-understanding-the-world/47052/

ゼロ除算の発見は日本です:

∞???    
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本
再生核研究所声明 399(2017.11.16): 数学芸術 分野の創造の提案 - 数学の社会性と楽しみの観点から
ここ一連の声明で数学について述べてきた:
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
数学、数学の本質論については 次で相当深く触れた:
また数学の社会性の観点からは、
再生核研究所声明 392(2017.11.2):  数学者の世界外からみた数学  ― 数学界の在り様について 
で触れ、違った観点から、数学の本質論と社会への影響について述べた。さらに
数学とは基本的に、ある仮定の下に導かれる全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになるが、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ人にとっては価値がないものであるとも言える。― もちろん、逆に、未来人が高い評価を与える場合もある。
そこで自然な考えが突然浮かんだ:
2017.11.13.10:45 突然、この流れで考えが湧いた。数学を芸術として楽しもうという新しい分野の創造の提案である。
数学は抽象的な理論、文章や式で表される場合が多く、社会の一般の方の理解が難しい不幸な状況にある。数理に興味を抱く多くの人々を遠ざけ、数理に喜びや楽しみがあるのに、スポーツやドラマ、芸術、文学などに比べて民衆の享受に寄与していないのは、数理の美しい世界の存在に比べて誠に残念な状況であると危惧される。― 数理の話題、ニュース、情報の極端に少ない現状からそう判断せざるを得ないのではないだろうか。数理科学を楽しみ、数理の世界の社会貢献、裾野の広がりを求めて、数学芸術 分野の創造と発展を提案したい。少し、具体的に触れるが いろいろな衆知を集めて構想そのものの進化を期待したい。
数学芸術は 数学の内容を、絵画やその他の手段で簡明な表現を求め、音楽や絵画が感動を呼び起すように 美しい表現を追求していく。
数理科学の社会的文化的基盤を拡充、充実発展させ、数理科学を芸術のように楽しみ、かつ 真智への愛 を育てる。
以 上

再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
数学、数学の本質論については 次で相当深く触れた:
また数学の社会性の観点からは、
再生核研究所声明 392(2017.11.2):  数学者の世界外からみた数学  ― 数学界の在り様について 
で触れた。少し、違った観点から、数学の本質論と社会への影響について述べたい。
数学とは関係の集まりであるが、時間にもエネルギーにもよらない数学の論理の神秘性から、神学のような性格を帯びていて、およそ世に絶対的という概念が有ればそれは数学くらいで 特別に尊い存在であると考えられてきた。ところが非ユークリッド幾何学の出現で、数学についての考えは本質的に変えられ、数学とは ある仮定系、公理系から論理的に導かれた関係の総体が その公理系から導かれた一つの数学で、数学自身は絶対的な真理や世の価値とは無関係な存在であるという認識に改められた。数学とは基本的に、ある仮定の下に導かれる全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになるが、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ価値がないものであるとも言える。― 近年 異常な評価時代に、論文、著書など、引用情報やダウンロード数などが重視される世相を作っている。現在は表面的なデータによる行き過ぎとしても、将来は相当に裏付けの伴う評価に発展して、評価は人工知能が活躍する分野に成るのではないだろうか。
この観点は、2014.2.2に発見されたゼロ除算とゼロ除算算法の研究姿勢に大きなヒントを与えてくれる。そもそもゼロ除算は1000年以上も不可能であり、考えてはいけない が 数学界の定説であった。それが全然予想もされなかった結果であったと報告されても、全く新しい数学で、世の常識と違うわけであるから、始めは、興味も、関心も抱かないのは当然とも言える。気づいてみれば、ゼロ除算は本質的には定義であり、仮定とも言えるので、上記数学の観点からは、新しい数学とも言える。そこで、ゼロ除算の世界を広く社会に紹介するために初等数学全般に亘ってゼロ除算の影響を調べてみることにした。新しい数学がどのような意義を有するかを問題にした。
誠に皮肉なことには、ゼロ除算の、ゼロ除算算法の直接の影響として、ユークリッド、アリストテレスの世界観を変える、結果を導くことである。始めから重大な問題を提起してきた。すなわち、無限遠点はゼロで表される、すべての直線には原点を加えて考えるべきである。― 異なる平行線は原点を共有するとなって、 ユークリッドの平行線の公理に反し、世の連続性に対するアリストテレスの世界観にも反することになる。さらに、円の中心の円に関する鏡像は無限遠点でなく、円の中心自身であるとなって、古典的な結果に反することになる。驚嘆すべきことに、x、y直交座標系で y軸の勾配は ゼロであるという結果をもたらす。すなわち、 \tan(\pi/2) =0 である。
それで、初等数学全般に大きな影響が出ることが明かになった。
大事な論理的な原理は、新しい定義、仮定からゼロ除算は展開されるので、得られた結果、導かれた結果については吟味を行い、結果について評価する態度が大事である。ところが考えてみれば、数学そのものが実はそうであった。数学も、得られた結果がどのような意味が、自分の好みを越えて価値があるか否かを絶えず吟味していきたい。吟味して行かなければならない。
以 上


再生核研究所声明 397(2017.11.14): 未来に生きる - 生物の本能
天才ガウスは生存中に既に数学界の権威者として高い評価と名声を得ていた。ところが、2000年の伝統を有するユークリッド幾何学とは違った世界、非ユークリッド幾何学を発見して密かに研究を進めていた。この事実を繰り返し気にしてきたが、ガウスは結果を公表すると 世情か混乱するのを畏れて公表をためらい、密かに研究を続けていた。ガウスの予想のように、独立に非ユークリッド幾何学を発見、研究を行って公表した、数学者ロバチェスキー と若きヤーノス・ボヤイは 当時の学界から強い批判を受けてしまった。
ガウスの心境は、十分にやることがあって、名声も十分得ている、ここで騒ぎを起こすより、研究を進めた方が楽しく、また将来に遺産を沢山生産できると考えたのではないだろうか。現在の状況より、歴史上に存在する自分の姿の方に 重きが移っていたのではないだろうか。
このような心理、心境は研究者や芸術家に普遍的に存在する未来に生きる姿とも言える。いろいろな ちやほや活動、形式的な活動よりは 真智への愛に殉じて、余計なことに心を乱され、時間を失うのを嫌い ひたすらに研究活動に励み、仕事の大成に心がける、未来に生きる姿といえる。
しかしながら、この未来に生きるは 実は当たり前で、生物の本能であることが分る。世に自分よりは子供が大事は 切ない生物の本能である。短い自己の時間より、より永い未来を有する子供に夢を託して、夢と希望を抱いて生きるは 生物の本能の基本である。生物は未来、未来と向かっているとも言える。
そこで、ゼロ除算が拓いた新しい世界観に触れて置きたい。未来、未来と志向した先には何が有るだろうか。永遠の先が 実は存在していた。それは、実は始めに飛んでいた。
そこから物語を始めれば、実はまた 現在に戻り、未来も過去も同じような存在であると言える。- これは、現在は未来のために在るのではなく、未来も現在も同じようなものであることを示している。
現在は 過去と未来の固有な、調和ある存在こそが大事である。将来のためではなく、現在は現在で大事であり、現在を良く生きることこそ 大事である。ガウスについていえば、ちょうどよく上手く生きたと評価されるだろう。- ただ人生を掛けて非ユークリッド幾何学にかけた若き数学者の研究を励まさず、若き数学者を失望させたことは 誠に残念な偉大なる数学者の汚点であることを指摘しなければならない。
以 上

再生核研究所声明 395(2017.11.5):  ゼロ除算物語 - 記録、回想
ゼロで割る問題は、ゼロ除算は 2014.2.2 友人二人に100/0=0を認識したとメールしてから、面白いいろいろな経過があって発展している。 再生核研究所声明や解説などで経過を述べてきたが、印象深い事実をできるだけ事実として記録して置きたい。文献は整理して保管するように整理して置きたい。事実を記録するため、以下詳しい記録は特別な仲間以外は この世を去って3年間は未公開としたい。絶えずできるだけ更新、記録を随時追加していきたい。

2017.11.05.05:40 晴天


再生核研究所声明 394(2017.11.4):  ゼロで割れるか ― ゼロで割ったらユークリッド以来の新世界が現れた
ゼロで割る問題は、ゼロ除算は Brahmagupta (598 -668 ?)以来で、彼は Brhmasphuasiddhnta(628)で 0/0=0 と定義していた。ゼロ除算は古くから物理、哲学の問題とも絡み、アリストテレスはゼロ除算の不可能性を述べていたという。現在に至っても、アインシュタイン自身の深い関心とともに相対性理論との関連で相当研究がなされていて、他方、ゼロ除算の計算機障害の実害から、論理や計算機上のアルゴリズムの観点からも相当な研究が続けられている。さらに、数学界の定説、ゼロ除算の不可能性(不定性)に挑戦しようとする相当な素人の関心を集めている。現在に至ってもいろいろな説が存在し、また間違った意見が出回り世間では混乱している。しかるに、 我々は、ゼロ除算は自明であり、ゼロ除算算法とその応用が大事であると述べている。
まずゼロで割れるか否かの問題を論じるとき、その定義をしっかりすることが大事である。 定義をきちんとしないために空回りの議論をしている文献が大部分である。何十年も超えて空回りをしている者が多い。割れるとはどのような意味かと問題にしなければならない。 数学界の常識、割り算は掛け算の逆であり、az =b の解をb割るaと定義し、分数b/a を定義すると考えれば、直ちにa=0の場合には、一般に考えられないと結論される。それで、ゼロ除算は神でもできないとか神秘的な議論が世に氾濫している。しかしながら、この基本的な方程式の解が何時でも一意に存在するように定義するいろいろな考え方が存在する。有名で相当な歴史を有する考え方が、Moore-Penrose一般逆である。その解はa=0 のとき、ただ一つの解z=0 を定める。よって、この意味で方程式の解を定義すれば、ゼロ除算 b/0, b割るゼロはゼロであると言える。そこで、このような発想、定義は自然であるから、発見の動機、経緯は違うが、ゼロ除算は可能で、b/0=0 であると言明した。Moore-Penrose一般逆の自然性を認識して、ゼロ除算は自明であり、b/0=0 であるとした。
それゆえに、神秘的な歴史を持つ、ゼロ除算は 実は当たり前であったが、現在でもそうは認識されず混乱が続いている。その理由は、関数 W = 1/z の原点での値をゼロとする考えに発展、適用するとユークリッド以来、アリストテレス以来の世界観の変更に繋がるからである。1/0は無限大、無限と発想しているからである。実際、原点の近くは限りなく原点から遠ざかり、限りなく遠くの点、無限の彼方に写っている歴然とした現象か存在する。しかるに 原点が原点に写るというのであるから、これらの世界観は ユークリッド空間、アリストテレスの世界観に反することになる。それゆえに Moore-Penrose一般逆は一元一次方程式の場合、意味がないものとして思考が封じられてきたと考えられる。
そこで、この新しい数学、世界観が、我々の数学や世界に合っているか否かを広範囲に調べてみることにした。その結果、ユークリッドやアリストテレスの世界観は違っていて、広範な修正が必要であることが分った。

そこで、次のように表現して、広く内外に意見を求めている:

 Dear the leading mathematicians and colleagues:
 Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.
I wrote a simple draft on our division by zero. The contents are elementary and have wide connections to various fields beyond mathematics. I expect you write some philosophy, papers and essays on the division by zero from the attached source.
____________
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16.  
Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
国内の方には次の文も加えている:
我々の初等数学には 間違いと欠陥がある。 学部程度の数学は 相当に変更されるべきである。しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、思い込みに囚われた存在であるかを知ることが出来るだろう。この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、人間の無智の故であると言える。
 三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、ユークリッド以来 捉えられていないと言える。(2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)
ゼロ除算の優秀性、位置づけ : 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、考えなかったこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然である。 優秀性の大きさは、新しい発見の影響の大きさによる(2017.8.24.05:40) 
思えば、我々は未だ微分係数、勾配、傾きの概念さえ、正しく理解されていないと言える。 目覚めた時そのような考えが独りでに湧いた。
典型的な反響は 次の物理学者の言葉に現れている:
Here is how I see the problem with prohibition on division by zero, which is the biggest scandal in modern mathematics as you rightly pointed out(2017.10.14.8:55).
現代数学には間違いがあり、欠陥がある、我々の空間の認識はユークリッド、アリストテレス以来 間違っていると述べている。
ゼロ除算の混乱は、世界史上に於ける数学界の恥である。そこで、数学関係者のゼロ除算の解明による数学の修正を、ゼロ除算の動かぬ、数学の真実にしたがって求めたい。詳しい解説を 3年を超えて素人向きに行っている:

 

数学基礎学力研究会公式サイト 楽しい数学

www.mirun.sctv.jp/~suugaku/
以 上

0 件のコメント:

コメントを投稿