2018年7月1日日曜日

La crucial teoría matemática que enfrentó a dos titanes del siglo XVII: Isaac Newton y Gottfried Leibniz

La crucial teoría matemática que enfrentó a dos titanes del siglo XVII: Isaac Newton y Gottfried Leibniz

Marcus du Sautoy, matemáticoSerie de la BBC "Breve historia de Matemáticas"
  • 30 junio 2018
Concha de nautilinosDerechos de autor de la imagenGETTY IMAGES
Image captionLa hermosa concha del nautilinos con su espiral logarítmica es la imagen clásica usada para ilustrar el desarrollo del cálculo.
Todo empezó en Europa a finales del siglo XVII. Dos excepcionales matemáticos estaban trabajando en el mismo problema al mismo tiempo.
Isaac Newton, ese gran héroe de la ciencia británica, tenía poco más de 20 años cuando comenzó a trabajar en una nueva rama de las matemáticas.
Newton se la describió a sus amigos, pero no publicó nada sobre ella.
Esa decisión más tarde tendría consecuencias desagradables pues, al mismo tiempo, el joven erudito alemán Gottfried Wilhelm Leibniz propuso una versión diferente de la misma cosa.
Se trataba del cálculo.
Si esa última palabra sólo te trae un vago recuerdo de algo que te enseñaron en el colegio o si te provoca terror, tratemos de remediarlo ya mismo de la mejor manera: a base de conocimiento.
Mujer asustada con un tablero lleno de fórmulas.Derechos de autor de la imagenGETTY IMAGES
Image captionNo te asustes... no es un examen: ya vamos a recordar de qué se trata.
línea estrellas

(Paréntesis para recordar qué es el cálculo)

En pocas palabras: el cálculo es una forma de describir las cosas que cambian.
Toma la famosa manzana que la leyenda dice que cayó del árbol sobre la cabeza del joven Newton e inspiró su teoría de la gravedad.
Caricatura de Newton cuando le cae la manzana en la cabezaDerechos de autor de la imagenMIKKI RAIN/SCIENCE PHOTO LIBRARY
Image captionLa manzana más famosa después de la de Adán y Eva.
En cualquier momento en particular, ¿cuán rápido caía la manzana?
La velocidad de la manzana aumenta constantemente a medida que la gravedad la hala hacia el suelo. Entonces, ¿cómo puedes calcular cuál es la velocidad en un momento dado de tiempo, por ejemplo, después de un segundo?
La velocidad es la distancia recorrida dividida por el tiempo transcurrido.
Así que podrías registrar la distancia que la manzana cae en el próximo segundo y eso te daría una velocidad promedio durante ese período.
Pero si quieres la velocidad precisa en un momento precisopodrías registrar la distancia recorrida en un período de tiempo más corto, digamos ½ segundo o ¼ de segundo. Cuanto menor es el intervalo de tiempo, más preciso es el cálculo de su velocidad.
En última instancia, para calcular la velocidad precisa en un momento preciso, necesitas tomar un intervalo de tiempo infinitamente pequeño.
El cálculo (infinitesimal) le da sentido a ese cálculo aparentemente imposible. Te dice a qué tiende la velocidad de algo, a medida que reduces el intervalo de tiempo.
El cálculo es la matemática de las cosas en movimiento.
línea estrellas

Cruce de cables

En julio de 1676, Newton le envió una carta a Henry Oldenburg, el primer secretario de la Sociedad Real de Londres, en la que describía su versión del cálculo.
Para evitar compartir detalles sobre cómo funcionaba, lo convirtió en un código curioso.
"La base de estas operaciones es bastante evidente, de hecho; pero como no puedo continuar con la explicación ahora, he preferido ocultarlo así:
6accdae13eff7i3l9n4o4qrr4s8t12vx"
Isaac NewtonDerechos de autor de la imagenSCIENCE PHOTO LIBRARY
Image captionNewton había hecho público su conocimiento. En el siglo XVII, correspondencia e incluso divulgación frente a testigos confiables de manuscritos o instrumentos privados tenía un peso considerable; el trabajo no necesariamente tenía que ser publicado.
Oldenburg le envió la carta a Leibniz, aunque tardó 6 meses en hacerlo pues no sabía dónde encontrarlo: el matemático alemán estaba siempre viajando.
Al final la recibió y aunque lo que Newton había querido hacer era reclamar el cálculo como suyo sin revelar detalles, Leibniz no los necesitó. Él lo entendió.
Inmediatamente envió una respuesta entusiasta, expresando su admiración por lo que Newton había compartido y presentando algunos descubrimientos propios.
Pero habían pasado ya tantos meses que cuando Newton recibió la respuesta de Leibniz, no respondió.
Lo que podría haber sido el comienzo de un fructífero intercambio de ideas se frustró.
Gottfried LeibnizDerechos de autor de la imagenSCIENCE PHOTO LIBRARY
Image captionCon el tiempo se ha establecido sin lugar a dudas que Newton desarrolló su "teoría de fluxiones" en 1665-6. Leibniz (en el retrato) llegó al cálculo de forma independiente durante el período de 1673-1676.
Leibniz comenzó a registrar su descubrimiento del cálculo, trabajando en él, intermitentemente, durante casi una década.
Cuando publicó sus estudios en 1684, la dinastía Bernouilli -una poderosa familia de matemáticos suizos- tomó sus ideas y las difundió ampliamente por todo el mundo matemático.
Leibniz comenzó a recibir crédito por esta nueva y poderosa rama de las matemáticas... algo que a Newton no le gustó.

No le gustó lo más mínimo

Newton en este momento estaba bien establecido como un gran científico.
Con solo 27 años, había sido galardonado con la prestigiosa cátedra Lucasian de matemáticas de la Universidad de Cambridge. Había publicado innumerables artículos científicos de gran importancia, incluidas sus leyes del movimiento y la famosa teoría universal de la gravitación.
Luego se convirtió en diputado y fue nombrado maestro de la Real Casa de la Moneda.
"No me gusta ser embaucado y burlado por extranjeros sobre cosas matemáticas", declaró.
Caricatura de Newton furiosoDerechos de autor de la imagenSCIENCE PHOTO LIBRARY
Image captionNewton se fue enfureciendo más y más con el tiempo. Durante años además, sus seguidores chocaban con los de Liebniz, por lo que se volvió una de las más grandes controversias de la historia de la ciencia.
En lugar de atribuirle a Leibniz su propia comprensión del cálculo, Newton decidió que Leibniz le había robado sus ideas y había pasado 6 meses trabajando en ellas antes de responderle.
En 1704, 20 años después de Leibniz, finalmente publicó su versión del cálculo, como un apéndice de su libro "Óptica: o un tratado de las reflexiones, refracciones, inflexiones y colores de la luz". En él, agregó un comentario que implicaba que Leibniz había copiado su trabajo:
"Hace algunos años presté un manuscrito que contenía tales teoremas sobre el cálculo y desde entonces me he encontrado con algunas cosas copiadas de él. En esta ocasión lo hice público".
Así comenzó una campaña de Newton para afirmar que, aunque Leibniz publicó antes que él, él era el inventor del cálculo.
Para Newton, compartir el crédito no era una opción.

Orgullo y prejuicio

En 1714, después de años de acrimonia y acusación, se le pidió a la Sociedad Real de Londres que resolviera entre las alegaciones rivales: ¿fue Newton el primero en descubrir el cálculo, con su método de fluxiones? ¿O se debía dar el crédito a Leibniz por su invención del método diferencial?
Calculo, método diferencialDerechos de autor de la imagenGETTY IMAGES
Image caption¿Es éste el método que debería llevarse los laureles?
"El método diferencial es el mismo que el de fluxiones, excepto en nombre y modo de anotación (...) por lo tanto asumimos que la pregunta adecuada (...)no es quién creó este método o el otro sino es quién fue el primer inventor del método (...)razón por la cual consideramos al Sr. Newton el primer inventor"
Leibniz, quien publicó su trabajo dos décadas antes que Newton, fue acusado de plagio y Newton fue honrado con el descubrimiento del cálculo.
No obstante, el informe de la Sociedad Real probablemente no era el más imparcial: el presidente de la organización en ese momento era Isaac Newton.
Cuando Newton murió en 1727, recibió un funeral de Estado y fue enterrado en la Abadía de Westminster con honores normalmente reservados para un general. El monumento de Leibniz, en contraste, es una placa simple en una pequeña iglesia en Hanover.
Pero fue la versión del erudito alemán del cálculo la que finalmente triunfó.
Leibniz tuvo la suerte de contar con el respaldo de la influyente familia Bernoulli, que se dio cuenta de cuán poderoso era el cálculo para encontrar la mejor solución a todo tipo de problemas.
Ese es el verdadero poder del cálculo: la capacidad de llegar a la solución más eficiente. Por eso se convirtió en una de las herramientas más importantes de toda la ciencia moderna.
El mundo natural está en constante estado de flujo, desde los planetas hasta el agua. Y si quieres comprenderlo y predecirlo, el cálculo es esencial.
Templo Liebniz en Hannover, AlemaniaDerechos de autor de la imagenGETTY IMAGES
Image captionClaro que además de la humilde placa en una iglesia, se han erguido varios monumentos para recordar a Liebniz, como este templo en el Georgegarden en Hannover, Alemania.http://www.bbc.com/mundo/noticias-44560601
 
再生核研究所声明3472017.1.17) 真実を語って処刑された者

まず歴史的な事実を挙げたい。Pythagoras、紀元前582年 - 紀元前496年)は、ピタゴラスの定理などで知られる、古代ギリシア数学者哲学者。彼の数学や輪廻転生についての思想はプラトンにも大きな影響を与えた。「サモスの賢人」、「クロトンの哲学者」とも呼ばれた(ウィキペディア)。辺の長さ1の正方形の対角線の長さが ル-ト2であることがピタゴラスの定理から導かれることを知っていたが、それが整数の比で表せないこと(無理数であること)を発見した弟子Hippasusを 無理数の世界観が受け入れられないとして、その事実を隠したばかりか、その事実を封じるために弟子を殺してしまったという。
また、ジョルダーノ・ブルーノ(Giordano Bruno, 1548年 - 1600年2月17日)は、イタリア出身の哲学者ドミニコ会修道士。それまで有限と考えられていた宇宙が無限であると主張し、コペルニクス地動説を擁護した。異端であるとの判決を受けても決して自説を撤回しなかったため、火刑に処せられた。思想の自由に殉じた殉教者とみなされることもある。彼の死を前例に考え、轍を踏まないようにガリレオ・ガリレイは自説を撤回したとも言われる(ウィキペディア)。

さらに、新しい幾何学の発見で冷遇された歴史的な事件が想起される:
非ユークリッド幾何学の成立
ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。
ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した(ウィキペディア)。

知っていて、科学的な真実は人間が否定できない事実として、刑を逃れるために妥協したガリレオ、世情を騒がせたくない、自分の心をそれ故に乱したくない として、非ユークリッド幾何学について 相当な研究を進めていたのに 生前中に公表をしなかった数学界の巨人 ガウスの処世を心に留めたい。
ピタゴラス派の対応、宗教裁判における処刑、それらは、真実よりも権威や囚われた考えに固執していたとして、誠に残念な在り様であると言える。非ユークリッド幾何学の出現に対する風潮についても2000年間の定説を覆す事件だったので、容易には理解されず、真摯に新しい考えの検討すらしなかったように見える。
真実を、真理を求めるべき、数学者、研究者、宗教家のこのような態度は相当根本的におかしいと言わざるを得ない。実際、人生の意義は帰するところ、真智への愛にあるのではないだろうか。本当のこと、世の中のことを知りたいという愛である。顕著な在り様が研究者や求道者、芸術家達ではないだろうか。そのような人たちの過ちを省みて自戒したい: 具体的には、

1)  新しい事実、現象、考え、それらは尊重されるべきこと。多様性の尊重。
2)  従来の考えや伝統に拘らない、いろいろな考え、見方があると柔軟に考える。
3)  もちろん、自分たちの説に拘ったりして、新しい考え方を排除する態度は恥ずべきことである。どんどん新しい世界を拓いていくのが人生の基本的な在り様であると心得る。
4)  もちろん、自分たちの流派や組織の利益を考えて新規な考えや理論を冷遇するのは真智を愛する人間の恥である。
5)  巨人、ニュートンとライプニッツの微積分の発見の先取争いに見られるような過度の競争意識や自己主張は、浅はかな人物に当たるとみなされる。真智への愛に帰するべきである。

数学や科学などは 明確に直接個々の人間にはよらず、事実として、人間を離れて存在している。従って無理数も非ユークリッド幾何学も、地球が動いている事も、人間に無関係で そうである事実は変わらない。その意味で、多数決や権威で結果を決めようとしてはならず、どれが真実であるかの観点が決定的に大事である。誰かではなく、真実はどうか、事実はどうかと真摯に、真理を追求していきたい。
人間が、人間として生きる究極のことは、真智への愛、真実を知りたい、世の中を知りたい、神の意思を知りたいということであると考える。 このような観点で、上記世界史の事件は、人類の恥として、このようなことを繰り返さないように自戒していきたい(再生核研究所声明 41(2010/06/10): 世界史、大義、評価、神、最後の審判)。

以 上
再生核研究所声明3432017.1.10)オイラーとアインシュタイン

世界史に大きな影響を与えた人物と業績について

再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。

オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(
)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。
次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質エネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。
ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:

Blackholes are where God divided by zero. I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (
Gamow, G., My World Line (Viking, New York). p 44, 1970).

今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。
しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
以 上







再生核研究所声明 427(2018.5.8): 神の数式、神の意志 そしてゼロ除算
NHKスペシャル 神の数式番組を繰り返し拝見して感銘を受けている。素晴らしい映像ばかりではなく、内容の的確さ、正確さに、ただただ驚嘆している。素晴らしい。
ある物理学の本質的な流れを理解し易く表現していて、物理学の着実な発展が良く分かる。
原爆を作ったり、素粒子を追求していたり、宇宙の生成を研究したり、物理学者はまるで、現代の神官のように感じられる。素粒子の世界と宇宙を記述するアインシュタインの方程式を融合させるなど、正に神の数式と呼ぶにふさわしいものと考えられる。流れを拝見すると物理学は適切な方向で着実に進化していると感じられる。神の数式に近づいているのに 野蛮なことを繰り返している国際政治社会には残念な気持ちが湧いて来る。ロシアの天才物理学者の終末などあまりにも酷いのではないだろうか。世界史の進化を願わざるを得ない。
アインシュタインの相対性理論は世界観の変更をもたらしたが、それに比べられるオイラーの公式は数学全般に大きな変革をもたらした: 

With this estimation, we stated that the Euler formula
$$
e^{\pi i} = -1
$$
is the best result in mathematics in details in: No.81, May 2012 (pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf
余りにも神秘的な数式のために、アインシュタインの公式 E= mc^2 と並べて考えられる 神の意志 が感じられるだろう。 ところで、素粒子を記述する方程式とアインシュタインの方程式を融合したら、 至る所に1/0 が現れて 至る所無限大が現れて計算できないと繰り返して述べられている。しかしながら、数学は既に進化して、1/0=0 で無限大は 実はゼロだった。 驚嘆すべき世界が現れた。しかしながら、数学でも依然として、rがゼロに近づくと 無限大に発散する事実が有るので、弦の理論は否定できず、問題が存在する。さらに、形式的に発散している場合でも、ゼロ除算算法で、有限値を与え、特異点でも微分方程式を満たすという新しい概念が現れ、局面が拓かれたので、数学者ばかりではなく、物理学者の注意を喚起して置きたい。
物理学者は、素粒子の世界と巨大宇宙空間の方程式を融合させて神の方程式を目指して研究を進めている。数学者はユークリッド以来現れたゼロ除算1/0と空間の新しい構造の中から、神の意志を追求して 新しい世界の究明に乗り出して欲しいと願っている。いみじくもゼロ除算は、ゼロと無限大の関係を述べていて、素粒子と宇宙論の類似を思わせる。
人の生きるは、真智への愛にある、すなわち、事実を知りたい、本当のことを知りたい、高級に言えば 神の意志 を知りたいということである。 そこで、我々のゼロ除算についての考えは真実か否か、広く内外の関係者に意見を求めている。関係情報はどんどん公開している。 ゼロ除算の研究状況は、
数学基礎学力研究会 サイトで解説が続けられている:http://www.mirun.sctv.jp/~suugaku/
また、ohttp://okmr.yamatoblog.net/ に 関連情報がある。
以 上
ゼロ除算の論文が2編、出版になりました:

ICDDEA: International Conference on Differential & Difference Equations and Applications
Differential and Difference Equations with Applications
ICDDEA, Amadora, Portugal, June 2017
• Editors

• (view affiliations)
• Sandra Pinelas
• Tomás Caraballo
• Peter Kloeden
• John R. Graef
Conference proceedingsICDDEA 2017

log0=log∞=0log⁡0=log⁡∞=0 and Applications
Hiroshi Michiwaki, Tsutomu Matuura, Saburou Saitoh
Pages 293-305

Division by Zero Calculus and Differential Equations
Sandra Pinelas, Saburou Saitoh
Pages 399-418
とても興味深くみました: ゼロ除算(division by zero)1/0=0、0/0=0、z/0=0 2018年05月28日(月) テーマ:数学 これは最も簡単な 典型的なゼロ除算の結果と言えます。  ユークリッド以来の驚嘆する、誰にも分る結果では ないでしょうか? Hiroshi O. Is It Really Impossible To Divide By Zero?. Biostat Biometrics Open Acc J. 2018; 7(1): 555703. DOI: 10.19080/BBOJ.2018.07.555703 ゼロで分裂するのは本当に不可能ですか? - Juniper Publishers ↓↓↓ https://juniperpublishers.com/bboaj/pdf/BBOAJ.MS.ID.555703.pdf ゼロ除算の発見と重要性を指摘した:日本、再生核研究所   2014年2月2日

God’s most important commandment

never-divide-by-zero-meme-66

Even more important than “thou shalt not eat seafood”
Published by admin, on October 18th, 2011 at 3:47 pm. Filled under: Never Divide By Zero Tags: commandment, Funny, god, zero • Comments Off on God’s most important commandment
http://thedistractionnetwork.com/.../never-divide.../page/4/

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

ソクラテス・プラトン・アリストテレス その他
https://ameblo.jp/syoshinoris/entry-12328488611.html

Ten billion years ago DIVISION By ZERO:
https://www.facebook.com/notes/yoshinori-saito/ten-billion-years-ago-division-by-zero/1930645683923690/

One hundred million years ago DIVISION By ZERO
https://www.facebook.com/.../one-hundred-million-years-ago



0 件のコメント:

コメントを投稿