数学の分科である複素解析(ふくそかいせき、英: complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。
複素関数[編集]
複素関数とは、自由変数と従属変数がともに複素数の範囲で与えられるような関数である。より正確に言えば複素平面の部分集合上で定義された複素数値の関数が複素関数と呼ばれる。複素関数に対し自由変数や従属変数を実部と虚部とにわけて考えることができる。
- {\displaystyle z=x+iy,\,w=f(z)=u(z)+iv(z),}
- ここで {\displaystyle x,y,u(z),v(z)\in \mathbb {R} .}
従って複素関数の成分
- {\displaystyle u=u(x,y),}
- {\displaystyle v=v(x,y)}
は、2つの実変数 x, y についての実数値関数だと考えることができる。(学校教育などにおいて)複素解析の基本的な概念は、指数関数、対数関数、三角関数などの実関数を複素関数に拡張することにより与えられることが多い。
複素解析関数[編集]
複素解析関数は、複素平面の開領域で定義され、定義域の全体で解析的な複素関数をいう。複素関数については解析的であることと微分可能であることは同値であり、これを正則 (holomorphic) という。複素関数が解析的でない点を特異点 (singularity) という。特異点における関数値は不定であったり絶対値が無限大に発散したりすることが多いことから、特異点は定義域の外にあると考える方が妥当であるが、当然に、定義域の外の点のうち、微分不可能な点を全て特異点というべきではない。特異点とは解析関数の定義域の閉包の開核に含まれる非解析的な点であると考えてもよい。ただし、究極的には、複素解析の対象となる関数が複素解析関数であり、複素解析の対象となる非解析的な点が特異点である。何が複素解析の対象になるかについては主観の入る余地がある。
特異点の分類[編集]
複素解析は解析的な領域を探求する分野であるが、複素関数に特異点がある場合、特異点を含む領域全体に於ける大局的な挙動は特異点に支配される。従って、特異点の位置や性質を研究することは複素解析の範疇に含まれる。
特異点には孤立したものと孤立しないものとがあるが、複素解析の対象となるのは主に孤立した特異点である。孤立特異点は、可除特異点、極 、真性特異点に分類される。除去可能な特異点とは、その点における値を適当に取り直すことにより、複素函数をその近傍で解析的にすることができるときに言う。極とは、複素函数 f(z) の特異点 z = a であって、(z − a)nf(z) において除去可能な特異点となる自然数 n が存在するものをいう。真性特異点とは、除去可能でも極でもない孤立特異点をいう。
非孤立特異点は、特異点が稠密に連なっているために、その近傍に必ず他の特異点を含んでしまう特異点をいう。例えば f(z) = 1/sin(1/z) は z = 0 に非孤立特異点を持つ(z = ±1/nπ は 0 以外の、孤立していない真性特異点、ただし n は任意の自然数)。この他に、定義域の自然な境界(解析接続によって越えられない壁)や多価関数を一価関数として扱うために導入する分岐切断 (branch cut) も一種の特異点と考えられる。分岐切断の端点を分岐点 (branch point) というが、分岐切断が有るかぎり、分岐点は孤立した特異点になりえない。然し、分岐切断は(分岐点を固定してホモトープである限り)何処に置いてもよいものであるから都合に合わせて分岐切断を動かせば、分岐点を恰も孤立した特異点であるかのように扱える。この発想はリーマン面に通ずる。分岐点は代数分岐点と対数分岐点に分類されるが、代数特異点、対数特異点と呼ばれることもある。
解析関数の分類[編集]
複素関数が微分可能であるということは、実関数が微分可能であるということに比べて遥かに強い条件である。一階微分可能な複素関数は無限階微分可能であり、積分可能であり、解析的である。この事実により、複素関数が微分可能であれば正則であるという。定義域(若しくは考察の対象となっている領域)の全体で正則な関数を正則関数といい、孤立した極を除いて正則な関数を有理型関数という。複素平面全体を定義域とする正則関数を整関数という。指数関数、正弦関数、余弦関数、多項式関数など、多くの初等関数は整関数であるが、正接関数などは極を持つから有理型であり、対数関数は負の実軸に分岐を持ち正則でない。ガンマ関数は負の整数に極を持つから有理型であるが、右半平面に限れば正則である。
著しい特徴[編集]
- 複素解析においてよく用いられる道具立てに線積分がある。コーシーの積分定理によって、閉じた経路で囲まれた領域の内側全体で正則になっている関数を、その経路上線積分した値はかならず 0 になるということがわかる。もし正則関数が特定の点を極にしているとき、つまりそこで関数の値が「爆発」し有限の値をとらないときには、その点での関数の留数を求めることで線積分の値を決定できる。各複素数における正則関数の値は、その点のまわりの円周上での(考えている正則関数に応じて構成される有理型関数の)線積分の値として求めることができる(コーシーの積分公式)。また、正則関数の線積分に関する留数の理論を用いることで複雑な実積分の値を決定することもできるようになる。
- カゾラーティ・ワイエルシュトラスの定理によって真性特異点のまわりでの正則関数の挙動に関する驚くべき性質が導かれる。特異点のまわりでの関数の挙動はテイラー級数に類似のローラン級数によって記述される。
- リウヴィルの定理によって複素平面全体で有界な正則関数は定数関数に限られることがわかるが、これをもちいて複素数体が代数的閉体であるという代数学の基本定理の自然で簡単な証明が与えられる。
- 正則関数の重要な性質に、正則な関数の連結な領域上全体での挙動が任意のより小さい領域上の挙動によって決定されてしまう(一致の原理)、というものがある。大きい領域全体でのもとの関数は小さい領域上に制限して考えたものの解析接続とよばれる。このような原理によってリーマンゼータ関数など、限られた領域上でしか収束しない級数によって定義されていた関数を複素平面全体に正則関数や有理型関数として拡張することが可能になる。場合によっては自然対数などのように複素平面内の単連結でない領域への解析接続が不可能なこともあるが、リーマン面とよばれる曲面を導入することでその上の正則関数としての「解析接続」を考えることができる。
上記の結果はすべて一変数に関する複素解析のものであるが、多変数複素解析に関しても豊かな理論が存在し、ベキ級数展開などの解析的な性質が成立している。一方で共形性などの一変数正則関数が持つ幾何学的な性質は拡張されず、リーマンの写像定理が示すような複素平面の領域に関する共形関係性など一変数の理論における最も重要な結果が高次元においてはもはや成立しない。
他の分野への応用[編集]
歴史的に複素解析、特に等角写像の理論は工学・地図学に多くの応用があるが、解析的整数論全般にわたっても応用されている。近年は複素力学系の勃興や正則関数の繰り返しによって与えられるフラクタル図形(有名な例としてマンデルブロ集合が挙げられる)の研究などによって有名になっている。他の重要な応用として共形変換に対して作用が不変な場の量子論である共形場理論が挙げられる。また電気工学におけるフェーザ表示、固体力学における応力関数、流体力学における複素速度ポテンシャルなど、工学の様々な分野にも応用されている。
歴史[編集]
複素解析は古くからある数学の分野であり、その起源は19世紀あるいはそれより以前にまでたどることができる。レオンハルト・オイラー、カール・フリードリッヒ・ガウス、ベルンハルト・リーマン、オーギュスタン=ルイ・コーシー、ワイエルシュトラスといった数学者や他の多くの二十世紀の数学者たちが複素解析の理論に貢献している。https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E8%A7%A3%E6%9E%90
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\usepackage{color}
\usepackage{url}
\newcounter{num}
\setcounter{num}{0}
%\setcounter{prop}{1}
\newcommand{\Fg}[1][]{\thenum}
\newcommand\Ra{r_{\rm A}}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 433:\\ Puha's Horn Torus Model for the Riemann Sphere From the Viewpoint of Division by Zero}
\author{
}
\date{2018.07.16}
\maketitle
\newcommand\Al{\alpha}
\newcommand\B{\beta}
\newcommand\De{\delta}
\def\z{\zeta}
\def\rA{r_{\rm A}}
{\bf Abstract: } In this announcement, we will introduce a beautiful horn torus model for the Riemann sphere in complex analysis from the viewpoint of the division by zero based on \cite{ps}.
\medskip
\section{Division by zero calculus and introduction}
The division by zero with mysterious and long history was indeed trivial and clear as in the followings:
\medskip
By the concept of the Moore-Penrose generalized solution of the fundamental equation $ax=b$, the division by zero was trivial and clear all as $a/0=0$ in the {\bf generalized fraction} that is defined by the generalized solution of the equation $ax=b$.
Division by zero is trivial and clear from the concept of repeated subtraction - H. Michiwaki.
Recall the uniqueness theorem by S. Takahasi on the division by zero.
The simple field structure containing division by zero was established by M. Yamada.
Many applications of the division by zero to Wasan geometry were given by H. Okumura.
\medskip
The division by zero opens a new world since Aristotelēs-Euclid.
See the references for recent related results.
As the number system containing the division by zero, the Yamada field structure is complete.
However, for applications of the division by zero to {\bf functions}, we need the concept of the division by zero calculus for the sake of uniquely determinations of the results and for other reasons.
For example, for the typical linear mapping
\begin{equation}
W = \frac{z - i}{z + i},
\end{equation}
it gives a conformal mapping on $\{{\bf C} \setminus \{-i\}\}$ onto $\{{\bf C} \setminus \{1\}\}$ in one to one and from \begin{equation}
W = 1 + \frac{-2i}{ z - (-i)},
\end{equation}
we see that $-i$ corresponds to $1$ and so the function maps the whole $\{{\bf C} \}$ onto $\{{\bf C} \}$ in one to one.
Meanwhile, note that for
\begin{equation}
W = (z - i) \cdot \frac{1}{z + i},
\end{equation}
we should not enter $z= -i$ in the way
\begin{equation}
[(z - i)]_{z =-i} \cdot \left[ \frac{1}{z + i}\right]_{z =-i} = (-2i) \cdot 0= 0 .
\end{equation}
\medskip
However, in many cases, the above two results will have practical meanings and so, we will need to consider many ways for the application of the division by zero and we will need to check the results obtained, in some practical viewpoints. We referred to this delicate problem with many examples.
Therefore, we will introduce the division by zero calculus. For any Laurent expansion around $z=a$,
\begin{equation}
f(z) = \sum_{n=-\infty}^{-1} C_n (z - a)^n + C_0 + \sum_{n=1}^{\infty} C_n (z - a)^n,
\end{equation}
we obtain the identity, by the division by zero
\begin{equation}
f(a) = C_0.
\end{equation}
Note that here, there is no problem on any convergence of the expansion (1.5) at the point $z = a$, because all the terms $(z - a)^n$ are zero at $z=a$ for $n \ne 0$.
\medskip
For the correspondence (1.6) for the function $f(z)$, we will call it {\bf the division by zero calculus}. By considering the formal derivatives in (1.5), we {\bf can define any order derivatives of the function} $f$ at the singular point $a$; that is,
$$
f^{(n)}(a) = n! C_n.
$$
\medskip
{\bf Apart from the motivation, we define the division by zero calculus by (1.6).}
With this assumption, we can obtain many new results and new ideas. However, for this assumption we have to check the results obtained whether they are reasonable or not. By this idea, we can avoid any logical problems. -- In this point, the division by zero calculus may be considered as an axiom.
\medskip
For the fundamental function $W =1/ z $ we did not consider any value at the origin $z = 0$, because we did not consider the division by zero
$1/ 0$ in a good way. Many and many people consider its value by the limiting like $+\infty $ and $- \infty$ or the
point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or
based on the basic idea of Aristotle. --
For the related Greece philosophy, see \cite{a,b,c}. However, as the division by zero we will consider its value of
the function $W =1 /z$ as zero at $z = 0$. We will see that this new definition is valid widely in
mathematics and mathematical sciences, see (\cite{mos,osm}) for example. Therefore, the division by zero will give great impacts to calculus, Euclidian geometry, analytic geometry, complex analysis and the theory of differential equations in an undergraduate level and furthermore to our basic ideas for the space and universe.
For the extended complex plane, we consider its stereographic projection mapping as the Riemann sphere and the point at infinity is realized as the north pole in the Alexsandroff's one point compactification.
The Riemann sphere model gives a beautiful and complete realization of the extended complex plane through the stereographic projection mapping and the mapping has beautiful properties like isogonal (equiangular) and circle to circle correspondence (circle transformation). Therefore, the Riemann sphere is a very classical concept \cite{ahlfors}.
Now, with the division by zero we have to admit the strong discontinuity at the point at infinity.
On this situation, V. Puha discovered the mapping of the extended complex plane to a beautiful horn torus at (2018.6.4.7:22) and its inverse at (2018.6.18.22:18).
Incidentally, independently of the division by zero, Wolfgang W. Daeumler has various special great ideas on horn torus as we see from his site:
\medskip
Horn Torus \& Physics ( https://www.horntorus.com/ ) 'Geometry Of Everything', intellectual game to reveal
engrams of dimensional thinking and proposal for a different approach to physical questions ...
\medskip
Indeed, Wolfgang Daeumler was presumably the first (1996) who came to the idea of the possibility of a mapping onto the horn torus. He expressed the idea of that on his private website (http://www.dorntorus.de). He was also, apparently, the first who to point out that zero and infinity are represented by one and the same point on the horn torus model of expanded complex plane.
\medskip
In this announcement, we will introduce simply the new horn torus model for the classical Riemann sphere from the viewpoint of the division by zero.
\section{Horn torus model}
We will consider the three circles stated by
$$
\xi^2 + \left(\zeta-\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2,
$$
$$
\left(\xi-\frac{1}{4}\right)^2 + \left(\zeta-\frac{1}{2}\right)^2 = \left(\frac{1}{4}\right)^2,
$$
and
$$
\left(\xi+\frac{1}{4}\right)^2 + \left(\zeta-\frac{1}{2}\right)^2 = \left(\frac{1}{4}\right)^2.
$$
By rotation on the space $(\xi,\eta,\zeta)$ on the $(x,y)$ plane as in $\xi =x, \eta=y$ around $\zeta$ axis, we will consider the sphere with $1/2$ radius as the Riemann sphere and the horn torus made in the sphere.
The stereographic projection mapping from $(x,y)$ plane to the Riemann sphere is given by
$$
\xi = \frac{x}{x^2 + y^2 + 1},
$$
$$
\eta = \frac{y}{x^2 + y^2 + 1},
$$
and
$$
\zeta = \frac{x^2 + y^2}{x^2 + y^2 + 1}.
$$
The mapping from $(x,y)$ plane to the horn torus by Puha is given by
$$
\xi = \frac{2x\sqrt{x^2 + y^2}}{(x^2 + y^2 + 1)^2},
$$
$$
\eta = \frac{2y\sqrt{x^2 + y^2}}{(x^2 + y^2 + 1)^2},
$$
and
$$
\zeta = \frac{(x^2 + y^2 -1)\sqrt{x^2 + y^2}}{(x^2 + y^2 + 1)^2} + \frac{1}{2}.
$$
The inversion is given by
$$
x = \xi \left(\xi^2 + \eta^2 + \left(\zeta - \frac{1}{2} \right)^2 -\zeta + \frac{1}{2} \right)^{(-1/2)}
$$
and
$$
y = \eta \left(\xi^2 + \eta^2 + \left(\zeta - \frac{1}{2} \right)^2 -\zeta + \frac{1}{2} \right)^{(-1/2)}.
$$
\section{Properties of horn torus model}
At first, the model shows the strong symmetry of the domains $\{|z|<1\}$ and $\{|z|>1\}$ and they correspond to the lower part and the upper part of the horn torus, respectively. The unit circle $\{|z|=1\}$ corresponds to the circle
$$
\xi^2 + \eta^2 = \left(\frac{1}{2}\right)^2, \quad \zeta = \frac{1}{2}
$$
in one to one way. Of course, the origin and the point at infinity are the same point and correspond to $(0,0,1/2)$. Furthermore,
the inversion relation
$$
z \longleftrightarrow \frac{1}{\overline{z}}
$$
with respect to the unit circle $\{|z|=1\}$ corresponds to the relation
$$
(\xi,\eta,\zeta) \longleftrightarrow (\xi,\eta, 1-\zeta)
$$
and similarly,
$$
z \longleftrightarrow -z
$$
corresponds to the relation
$$
(\xi,\eta,\zeta) \longleftrightarrow (- \xi,-\eta, \zeta)
$$
and
$$
z \longleftrightarrow - \frac{1}{\overline{z}}
$$
corresponds to the relation
$$
(\xi,\eta,\zeta) \longleftrightarrow (-\xi,-\eta, 1-\zeta)
$$
(H.G.W. Begehr: 2018.6.18.19:20).
Furthermore, we can see directly the important properties that the mapping is isogonal (equiangular) and infinitely small circles correspond
to infinitely small circles, as in analytic functions. However, of course, circles to circles mapping property is, in general, not valid as in the case of the stereographic projection mapping.
Horn torus, in contrast to the Riemann sphere, does not satisfy the definition of simply connected space because a closed nonzero path passing through the point $(0,0,1/2)$ can not be continuously shrinked to the point. In particular, note that a curve can pass the point $(0,0,1/2)$ on the horn torus.
We note that only zero and numbers of the form $|a|=1$ have the property : $ |a|^b=|a|, b\ne 0.$
Here, note that we can also consider $0^b =0$ (\cite{mms18}). The symmetry of the horn torus model agrees perfectly with this fact. Only zero and numbers of the form $|a|=1$ correspond to points on the plane described by equation $\zeta -1/2=0$. Only zero and numbers of the form $|a| =1$ correspond to points whose tangent lines to the surface of the horn torus are parallel to the axis $\zeta$.
\section{Conclusion}
The division by zero shows the strong discontinuity at the point at infinity, however, the Riemann sphere model and stereographic projection mapping are fundamental and beautiful.
Many people feel strange feelings for the strong discontinuity that is introduced by the division by zero to the Riemann sphere, however, the strong discontinuity appears in the universe naturally as we see from our new and many concrete results since Euclid.
However, the beautiful horn torus model may be accepted with great pleasures as our space idea. In particular, note that the domains $\{|z|<1\}$ and $\{|z|>1\}$ are completely conformally equivalent and so the completely symmetric property of the corresponding domains on the horn torus is very fine and from this viewpoint, the Riemann sphere model will be curious, in particular, at the point at infinity and the point at infinity will be vague.
\section{Acknowledgements}
The Insitute of Reproducing Kernels wishes to express its deep thanks Professors and colleagues H.G.W. Begehr, Wolfgang W. Daeumler, Hiroshi Okumura, Vyacheslav Puha and Tao Qian for their exciting communications.
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{ms16}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.
\bibitem{mms18}
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230} (2018), 293-305.
\bibitem{msy}
H. Michiwaki, S. Saitoh and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html
\bibitem{mos}
H. Michiwaki, H. Okumura and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces,
International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue 1, 1-16.
\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of $0$ and $\infty$,
Journal of Technology and Social Science (JTSS), {\bf 1}(2017), 70-77.
\bibitem{os}
H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).
\bibitem{o}
H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International Journal of Geometry.
\bibitem{os18april}
H. Okumura and S. Saitoh,
Harmonic Mean and Division by Zero,
Dedicated to Professor Josip Peˇ cari´c on the occasion of his 70th birthday, Forum Geometricorum, {\bf 18} (2018), 155—159.
\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum, {\bf 18}(2018), 97-100.
\bibitem{os18e}
H. Okumura and S. Saitoh,
Applications of the division by zero calculus to Wasan geometry.
GLOBAL JOURNAL OF ADVANCED RESEARCH ON CLASSICAL AND MODERN GEOMETRIES” (GJARCMG)(in press).
\bibitem{ps18}
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230} (2018), 399-418.
\bibitem{ps}
V. Puha and S. Saitoh,
Horn Torus Model for the Riemann Sphere From the Viewpoint of Division by Zero (manuscript).
\bibitem{s14}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/
\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182. (Springer)
\bibitem{s17}
S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).
\bibitem{s18}
S. Saitoh, Division by zero calculus (189 pages): http//okmr.yamatoblog.net/
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.
\bibitem{a}
https://philosophy.kent.edu/OPA2/sites/default/files/012001.pdf
\bibitem{b}
http://publish.uwo.ca/~jbell/The 20Continuous.pdf
\bibitem{c}
http://www.mathpages.com/home/kmath526/kmath526.htm
\end{thebibliography}
\end{document}
0 件のコメント:
コメントを投稿