科学と宗教の融和を説く 伊東俊太郎さん
「日本科学協会」による論文集「科学と宗教 対立と融和のゆくえ」(中央公論新社)の出版セミナーが東京都内で開かれ、比較文明史が専門の伊東俊太郎・東大名誉教授(88)らが講演した。
「世界宗教と科学」のテーマで話した伊東さんは、人類史の大きな転換点として5段階を列挙。人が二足歩行を始めた人類革命▽農耕を発見した農業革命▽都市を形成した都市革命▽哲学や宗教による精神革命▽近代科学の科学革命--を経て、現在は新たな「環境革命」を迎えているとの自説を披露した。
中でも、これまで神と人など上下の関係が重視されてきた精神革命では、「人と人、人と自然という横の結びつきこそが重要」と強調した。
米国が在イスラエル大使館をエルサレムに移転し、抗議デモが続いている問題を挙げ、「今、世界が直面している危機の多くが宗教と科学との対立、あるいはアンバランスが原因。人類には『共に生きるための知恵』が必要です」と訴えた。【森忠彦】https://mainichi.jp/articles/20180628/dde/014/070/007000c
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更は かつて無かった事である。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象、接線などの新しい性質、解析幾何学との美しい関係と調和。すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること。行列式と破壊現象の美しい関係など。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時、微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法で統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
以 上
追記:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory, 6, 51-58.
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdfDOI:10.12732/ijam.v27i2.9.
再生核研究所声明316(2016.08.19) ゼロ除算における誤解
(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更は かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
以 上
再生核研究所声明335(2016.11.28) ゼロ除算における状況
ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更は かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
4. 孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること; \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線や法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。
資料:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
*156 Qian,T./Rodino,L.(eds.):
Mathematical Analysis, Probability and
Applications -Plenary Lectures: Isaac 2015, Macau, China.
(Springer Proceedings in Mathematics and Statistics, Vol. 177)
Sep. 2016 305 pp.
(Springer) 9783319419435 25,370.
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku堪らなく楽しい数学-ゼロで割ることを考える
以 上
ゼロ除算の論文が2編、出版になりました:
ICDDEA: International Conference on Differential & Difference Equations and Applications
Differential and Difference Equations with Applications
ICDDEA, Amadora, Portugal, June 2017
• Editors
• (view affiliations)
• Sandra Pinelas
• Tomás Caraballo
• Peter Kloeden
• John R. Graef
Conference proceedingsICDDEA 2017
log0=log∞=0log0=log∞=0 and Applications
Hiroshi Michiwaki, Tsutomu Matuura, Saburou Saitoh
Pages 293-305
Division by Zero Calculus and Differential Equations
Sandra Pinelas, Saburou Saitoh
Pages 399-418
ICDDEA: International Conference on Differential & Difference Equations and Applications
Differential and Difference Equations with Applications
ICDDEA, Amadora, Portugal, June 2017
• Editors
• (view affiliations)
• Sandra Pinelas
• Tomás Caraballo
• Peter Kloeden
• John R. Graef
Conference proceedingsICDDEA 2017
log0=log∞=0log0=log∞=0 and Applications
Hiroshi Michiwaki, Tsutomu Matuura, Saburou Saitoh
Pages 293-305
Division by Zero Calculus and Differential Equations
Sandra Pinelas, Saburou Saitoh
Pages 399-418
再生核研究所声明 394(2017.11.4): ゼロで割れるか ― ゼロで割ったらユークリッド以来の新世界が現れた
ゼロで割る問題は、ゼロ除算は Brahmagupta (598 -668 ?)以来で、彼は Brhmasphuasiddhnta(628)で 0/0=0 と定義していた。ゼロ除算は古くから物理、哲学の問題とも絡み、アリストテレスはゼロ除算の不可能性を述べていたという。現在に至っても、アインシュタイン自身の深い関心とともに相対性理論との関連で相当研究がなされていて、他方、ゼロ除算の計算機障害の実害から、論理や計算機上のアルゴリズムの観点からも相当な研究が続けられている。さらに、数学界の定説、ゼロ除算の不可能性(不定性)に挑戦しようとする相当な素人の関心を集めている。現在に至ってもいろいろな説が存在し、また間違った意見が出回り世間では混乱している。しかるに、 我々は、ゼロ除算は自明であり、ゼロ除算算法とその応用が大事であると述べている。
まずゼロで割れるか否かの問題を論じるとき、その定義をしっかりすることが大事である。 定義をきちんとしないために空回りの議論をしている文献が大部分である。何十年も超えて空回りをしている者が多い。割れるとはどのような意味かと問題にしなければならない。 数学界の常識、割り算は掛け算の逆であり、az =b の解をb割るaと定義し、分数b/a を定義すると考えれば、直ちにa=0の場合には、一般に考えられないと結論される。それで、ゼロ除算は神でもできないとか神秘的な議論が世に氾濫している。しかしながら、この基本的な方程式の解が何時でも一意に存在するように定義するいろいろな考え方が存在する。有名で相当な歴史を有する考え方が、Moore-Penrose一般逆である。その解はa=0 のとき、ただ一つの解z=0 を定める。よって、この意味で方程式の解を定義すれば、ゼロ除算 b/0, b割るゼロはゼロであると言える。そこで、このような発想、定義は自然であるから、発見の動機、経緯は違うが、ゼロ除算は可能で、b/0=0 であると言明した。Moore-Penrose一般逆の自然性を認識して、ゼロ除算は自明であり、b/0=0 であるとした。
それゆえに、神秘的な歴史を持つ、ゼロ除算は 実は当たり前であったが、現在でもそうは認識されず混乱が続いている。その理由は、関数 W = 1/z の原点での値をゼロとする考えに発展、適用するとユークリッド以来、アリストテレス以来の世界観の変更に繋がるからである。1/0は無限大、無限と発想しているからである。実際、原点の近くは限りなく原点から遠ざかり、限りなく遠くの点、無限の彼方に写っている歴然とした現象か存在する。しかるに 原点が原点に写るというのであるから、これらの世界観は ユークリッド空間、アリストテレスの世界観に反することになる。それゆえに Moore-Penrose一般逆は一元一次方程式の場合、意味がないものとして思考が封じられてきたと考えられる。
そこで、この新しい数学、世界観が、我々の数学や世界に合っているか否かを広範囲に調べてみることにした。その結果、ユークリッドやアリストテレスの世界観は違っていて、広範な修正が必要であることが分った。
そこで、次のように表現して、広く内外に意見を求めている:
Dear the leading mathematicians and colleagues:
Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.
I wrote a simple draft on our division by zero. The contents are elementary and have wide connections to various fields beyond mathematics. I expect you write some philosophy, papers and essays on the division by zero from the attached source.
____________
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1
-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
国内の方には次の文も加えている:
我々の初等数学には 間違いと欠陥がある。 学部程度の数学は 相当に変更されるべきである。しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、思い込みに囚われた存在であるかを知ることが出来るだろう。この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、人間の無智の故であると言える。
三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、ユークリッド以来 捉えられていないと言える。(2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)
ゼロ除算の優秀性、位置づけ : 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、考えなかったこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然である。 優秀性の大きさは、新しい発見の影響の大きさによる(2017.8.24.05:40)
思えば、我々は未だ微分係数、勾配、傾きの概念さえ、正しく理解されていないと言える。 目覚めた時そのような考えが独りでに湧いた。
典型的な反響は 次の物理学者の言葉に現れている:
Here is how I see the problem with prohibition on division by zero, which is the biggest scandal in modern mathematics as you rightly pointed out(2017.10.14.8:55).
現代数学には間違いがあり、欠陥がある、我々の空間の認識はユークリッド、アリストテレス以来 間違っていると述べている。
ゼロ除算の混乱は、世界史上に於ける数学界の恥である。そこで、数学関係者のゼロ除算の解明による数学の修正を、ゼロ除算の動かぬ、数学の真実にしたがって求めたい。詳しい解説を 3年を超えて素人向きに行っている:
数学基礎学力研究会公式サイト 楽しい数学
www.mirun.sctv.jp/~suugaku/
以 上
再生核研究所声明 397(2017.11.14): 未来に生きる - 生物の本能
天才ガウスは生存中に既に数学界の権威者として高い評価と名声を得ていた。ところが、2000年の伝統を有するユークリッド幾何学とは違った世界、非ユークリッド幾何学を発見して密かに研究を進めていた。この事実を繰り返し気にしてきたが、ガウスは結果を公表すると 世情か混乱するのを畏れて公表をためらい、密かに研究を続けていた。ガウスの予想のように、独立に非ユークリッド幾何学を発見、研究を行って公表した、数学者ロバチェスキー と若きヤーノス・ボヤイは 当時の学界から強い批判を受けてしまった。
ガウスの心境は、十分にやることがあって、名声も十分得ている、ここで騒ぎを起こすより、研究を進めた方が楽しく、また将来に遺産を沢山生産できると考えたのではないだろうか。現在の状況より、歴史上に存在する自分の姿の方に 重きが移っていたのではないだろうか。
このような心理、心境は研究者や芸術家に普遍的に存在する未来に生きる姿とも言える。いろいろな ちやほや活動、形式的な活動よりは 真智への愛に殉じて、余計なことに心を乱され、時間を失うのを嫌い ひたすらに研究活動に励み、仕事の大成に心がける、未来に生きる姿といえる。
しかしながら、この未来に生きるは 実は当たり前で、生物の本能であることが分る。世に自分よりは子供が大事は 切ない生物の本能である。短い自己の時間より、より永い未来を有する子供に夢を託して、夢と希望を抱いて生きるは 生物の本能の基本である。生物は未来、未来と向かっているとも言える。
そこで、ゼロ除算が拓いた新しい世界観に触れて置きたい。未来、未来と志向した先には何が有るだろうか。永遠の先が 実は存在していた。それは、実は始めに飛んでいた。
そこから物語を始めれば、実はまた 現在に戻り、未来も過去も同じような存在であると言える。- これは、現在は未来のために在るのではなく、未来も現在も同じようなものであることを示している。
現在は 過去と未来の固有な、調和ある存在こそが大事である。将来のためではなく、現在は現在で大事であり、現在を良く生きることこそ 大事である。ガウスについていえば、ちょうどよく上手く生きたと評価されるだろう。- ただ人生を掛けて非ユークリッド幾何学にかけた若き数学者の研究を励まさず、若き数学者を失望させたことは 誠に残念な偉大なる数学者の汚点であることを指摘しなければならない。
0 件のコメント:
コメントを投稿