In response to “A View from the Bridge” by Natalie Paquette (Vol. 3, No. 4).
To the editors:
In 1972, the American Mathematical Society’s Josiah Willard Gibbs Lecture was delivered by Freeman Dyson. “As a working physicist,” he began, “I am acutely aware of the fact that the marriage between mathematics and physics, which was so enormously fruitful in the past centuries, has recently ended in divorce.”1 The title of Dyson’s lecture, “Missed Opportunities,” referred to “occasions on which mathematicians and physicists lost chances of making discoveries by neglecting to talk to each other.”
As it turned out, the divorce did not last long. By the time of Dyson’s lecture, James Simons and Chen-Ning Yang, a mathematician and a physicist at Stony Brook University, had realized that fiber bundle connections in mathematics are identical to gauge fields in Yang-Mills theory—a theoretical model of elementary particles that Yang had constructed with Robert Mills two decades earlier by generalizing Maxwell’s theory of electromagnetism.2 By the middle of the 1970’s, Yang-Mills theory had been established as a key theoretical ingredient of what is now known as the Standard Model of particle physics, thanks to Gerard ‘t Hooft and Martinius Veltman’s proof of its renormalizability and the discovery of its asymptotic freedom by David Gross, David Politzer, and Frank Wilczek. Because of the central role it plays in mathematics and physics, Yang-Mills theory has allowed mathematicians to dip their toes in the elusive world of quantum field theory (QFT)—even though it has been the basic language in elementary particle physics for almost a century, QFT remains elusive because its mathematical foundation is still lacking.
In her essay, Natalie Paquette reviewed four recent developments in physical mathematics to showcase the power of QFT to inspire new developments in mathematics. The major contributor in all four examples has been awarded a Fields Medal, the highest honor in mathematics. Paquette describes this situation as distinctly odd. “A line of influence,” she writes, “has always run from mathematics to physics.” When attempting to explain “the unreasonable effectiveness of physics within mathematics,” she suggests that
the difference between them may be less a matter of their content than their technique; and that, in the end, they serve to show that there is only one reality to which they both appeal.
Paquette’s claim is a radical departure from the prevailing view of mathematics, that it exists in the Platonic world independently of physical reality, and it can be used to explain not only our own universe, but all logically possible universes.
I would like to propose a different explanation for the unreasonable effectiveness of physics.
Until the seventeenth century, it was widely believed throughout Europe that there was one set of laws governing phenomena on the Earth, and another set of laws for the heavens. For this reason, it came as a great surprise when Galileo Galilei pointed his newly invented telescope at the night sky and discovered that the Moon also has mountains and valleys. Though I am uncertain whether a twenty-three-year-old Isaac Newton did indeed discover his law of gravitation by observing an apple falling from a tree, he must surely have realized by this time that falling apples and the moon’s orbit are due to the same force—a universal law explains gravitational phenomena both on earth and in the heavens. For the purposes of formulating the law and using it to explain planetary orbits in our solar system, seventeenth century mathematics was inadequate. Newton had to invent calculus to work with infinitesimals, define the velocity and acceleration of a trajectory, and to solve his equations of motion. In 1684, Edmond Halley visited Newton in Cambridge. Halley asked Newton what he thought the trajectory might be for a planet’s orbit under the inverse-square law. Newton replied immediately that it would be an ellipse.
Natural languages such as English and Japanese have been invented, developed, and refined over tens of thousands of years in order to describe phenomena in everyday life. During the past few centuries, the realm of human experiences has expanded dramatically. In the early seventeenth century, Galileo’s use of the telescope enabled him to see the moon’s surface a billion meters away. Four centuries later, the LIGO observatories have detected gravitational waves that originated from the collisions of massive black holes located billions of light years away, while the Large Hadron Collider near Geneva, Switzerland is used to observe microscopic phenomena at a billionth of billionth of a meter. With such an expansion of our scientific sphere, it is entirely reasonable that our natural languages are not suitable to explain them. We need to develop a new language—the language of mathematics.
In addition to the lofty goal of discovering the fundamental laws of nature, practical needs in science and engineering have also led to the invention of new mathematical concepts and methods, and they have, in turn, given rise to further scientific discoveries. When Europeans began extensive overseas exploration and colonization during the fifteenth century, the process of determining a ship’s position required precise astronomical measurements and calculations to more than ten decimal places. Astronomers began using trigonometric functions since their addition theorems can be used to transform the multiplication and division of large numbers into the addition and subtraction of angles. In 1614, John Napier invented the logarithm to simplify calculations and published ninety pages of logarithm tables.3 Among its first applications was Johannes Kepler’s discovery of his third law of planetary motion. Kepler announced his first and second laws in 1609, but it took him a further ten years to come up with his third law, which gives the relation between the period of a planetary orbit and its major axis.4 When Kepler heard about Napier’s book and the logarithm, he immediately recognized its power and applied it when analyzing data he had inherited from Tycho Brahe. Kepler hit upon the third law when he computed logarithms of the periods and the axes of the six planets known at the time. The logarithm subsequently became an indispensable tool for astronomers. Pierre-Simon Laplace remarked that “by reducing the labor of many months to a few days, it doubles the life of the astronomer.”
There is yet another way for physics to influence mathematics: reasoning based on physics has led to the discovery of new mathematical theorems. In the third century BCE, Archimedes of Syracuse sent a manuscript to Eratosthenes, the director of the Great Library of Alexandria. The manuscript, in the form of a letter, became known as The Method because it began as follows:
Since I see that you are a capable scholar and a prominent teacher of philosophy, and also that you understand how to value a mathematical method of investigation when the opportunity is offered, I have thought it well to analyze and lay down a peculiar method by means of which it will be possible for you to derive instruction as to how certain mathematical questions may be investigated by means of mechanics. And I am convinced that this is equally profitable in demonstrating a proposition itself; for much that was made evident to me through the medium of mechanics was later proved by means of geometry because of the treatment by the former method had not yet been established by way of a demonstration.5
The use of mechanics by Archimedes in anticipating geometric theorems was in the same spirit as the use of mirror symmetry in physics by Philip Candelas et al. when computing the Gromov-Witten invariants, as recounted in Paquette’s essay.
These examples show that mathematics and physics have been in equipoise over the past millennia. Physical mathematics is not a recent phenomenon. As science progresses, we are constantly expanding the frontiers of human knowledge. The new natural phenomena we experience are not necessarily describable or explainable using existing languages and new mathematical concepts and tools are often needed. Once invented, mathematics acquires its own life and starts to grow according to its own logic. Given a set of axioms, mathematical theorems are true everywhere in our own universe, or any other possible universe—perhaps even without any universe at all. In this sense, mathematics exists independently of physical reality. Physics leads us to fruitful new areas of mathematics by posing challenging questions and predicting their answers by physical reasoning. Physics is particularly effective at influencing mathematics because it is the most quantitative of all the sciences and its observations can often be formulated as precise conjectures.
This still leaves us with the question of why the relationship between mathematics and physics has been so active and productive during the last four decades, whereas at the time of Dyson’s lecture the two were almost divorced. To answer this question, I need to explain QFT and its place at the current interface of physics and mathematics.
The simplest way to define QFT would be to state that it is a theoretical framework to unify special relativity and quantum mechanics.6 Special relativity tells us that energy can be converted into the masses of particles and that particles can be spontaneously created from the vacuum by focusing a sufficient amount of energy in a small region of space. Werner Heisenberg’s uncertainty principle, on the other hand, tells us that energy and time cannot be simultaneously measured with arbitrary precision and that the conservation of energy can and must be violated for a brief period of time. Any framework to unify special relativity and quantum mechanics needs to allow for processes where the number of particles changes by the uncertainty in energy. Every particle is characterized by its position, possibly with additional numbers such as the electric charge, called the degrees of freedom of a particle. If each particle possesses a finite number of such degrees of freedom, the theory that describes an arbitrary number of particles should be able to accommodate infinitely many degrees of freedom. QFT is a program to achieve this by assigning independent degrees of freedom at each point in space. The term field is used here in the same sense as in the electric field and the magnetic field, whose value can vary from point to point.
The infinitely many degrees of freedom in QFT posed enormous challenges for physicists when they tried to make sense of the theory. Initial attempts to use the theory to calculate quantum effects often produced infinities for what should have been physically observable quantities. Though the renormalization techniques invented by Richard Feynman, Julian Schwinger, and Shin’ichirō Tomonaga provided a means to extract finite and meaningful answers from the infinities in QFT computations, infinite degrees of freedom continued to be a major obstruction to a precise mathematical formulation of the theory. The lack of mathematical definition made it difficult for physicists using QFT to explain their research results to mathematicians and impeded fruitful collaborations. It also limited the applicability of QFT—the theory was useful only when forces between particles are weak and when approximate calculations can be performed by iterative integrals. It seems plausible to suggest that the pessimistic tone of Dyson’s Gibbs lecture reflected the status of QFT in the late 1960s. He had made a major contribution to QFT during the late 1940s by establishing the relationship between the seemingly different approaches of Feynman, Schwinger, and Tomonaga. Dyson must surely have been aware of the shortcomings of the theory.7
Over the last four decades the situation has improved dramatically. The mathematical interpretation of Yang-Mills theory introduced powerful geometric methods to QFT, allowing us to glimpse the theory beyond the approximate treatment of weak forces, and inspired the invention of new techniques such as solitons, instantons, and the large N expansion. The renormalization method, which was thought to be a tentative resolution of the infinity problem, turned out to be an intrinsic and fundamental property of QFT and was re-invented as the renormalization group by Kenneth Wilson. The atmosphere of the late 1970s was vividly recounted in the preface to a collection of lecture notes by Sidney Coleman, a legendary figure in the development of QFT.
This was a great time to be a high-energy theorist, the period of the famous triumph of quantum field theory. And what a triumph it was, in the old sense of the word: a glorious victory parade, full of wonderful things brought back from far places to make the spectator gasp with awe and laugh with joy.8
The superstring revolution that began in 1984 brought a new perspective to the study of QFT. While the theory contains both special relativity and quantum mechanics, gravity cannot be included in its current framework because this would generate infinitely many new types of infinities that cannot be removed even by renormalization. For this purpose, a unification of general relativity and quantum mechanics would be required, and the only credible candidate we have found thus far is superstring theory. In 1984, a series of discoveries initiated by Michael Green and John Schwarz’s anomaly cancellation mechanism showed that superstring theory also contains all the theoretical ingredients for the Standard Model of particle physics. QFT is used in many aspects of superstring theory, and it also arises as various limits of superstring theory. By way of superstring theory, seemingly different kinds of quantum field theories became related to each other. Many technically difficult problems have also been transformed into simpler problems, deepening our insight into QFT.
Just as physical reasoning based on mechanics led Archimedes to discover geometric theorems, QFT calculations have produced many interesting conjectures in mathematics. Even though QFT itself is still lacking a solid foundation, conjectures it has produced can be precisely formulated and many have been proven mathematically. These conjectures often connect different areas of mathematics in surprising ways. As noted by Paquette, mirror symmetry relates enumerative problems in geometry to period integrals and monstrous moonshine relates the representation theory of finite groups to the theory of modular forms. QFT’s unreasonable effectiveness in producing powerful conjectures in mathematics is a reflection of the fact that it was invented and developed to understand the microscopic frontier of physics, and that we are struggling to invent a new language of mathematics to describe it. QFT is a work in progress; its treatment of infinities is ad hoc, and it is not clear whether various limits one takes to compute physically observable quantities are well-defined. Experimental evidence overwhelmingly supports its correctness. QFT calculations of the magnetic moment of the electron have been experimentally verified up to twelve decimal places, which is perhaps the most precise confirmation of any scientific theory. Its unreasonable effectiveness in mathematics suggests that there must be a place for the theory in the Platonic world of mathematics.
Eleven years ago, I worked on a proposal for a new research institute in Tokyo—a place where mathematicians could work with physicists and astronomers to solve some of the most fundamental questions about the universe, such as how it began, what it is made of, and what its future might be. The decision to include mathematics as one of the core areas of the proposed institute was inspired, in part, by the following passage from Galileo’s Il Saggiatore:
Philosophy is written in this grand book—I mean the Universe—which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written. It is written in the language of mathematics…
We also wanted to include the word mathematics in the name of the institute itself. The name we came up with was the Institute for the Physics and Mathematics of the Universe.9 As non-native speakers, we were unsure if “Mathematics of the Universe” is correct English. We later found a book review by Roger Penrose with exactly the same title.10Published in Nature, it was a review of “The Large Scale Structure of Space-Time” by Stephen Hawking and George Ellis, concerning geometric approaches to general relativity developed by Hawking, Penrose and others. General relativity had, in fact, played a central role in the development of cosmology and astrophysics during the twentieth century. For this reason, it seemed justifiable to refer to the mathematics of the Universe.
For the ancient Egyptians and Greeks, the mathematics of the universe must have been plane geometry. The word geometry means “measure of land,” suggesting that it was developed to understand the space around us. Eratosthenes used geometry to measure the radius of the Earth and by combining this result with Aristarco’s observations of a lunar eclipse he was able to determine the radius of the Moon. To measure astronomical distances Hipparchus developed the parallax method. Many ancient Greeks did not believe in the heliocentric view of the solar system, but this was not solely due to religious reasons. If the earth were orbiting around the sun then, they thought it should have been possible to observe stellar parallax. They were unable to do so. Their logic was, in fact, perfectly sound, but the stars are much further away than they imagined. The annual parallax of Alpha Centauri, the nearest star to the Earth, is mere 0.0002 degrees.
Even in the early seventeenth century, plane geometry was still the mathematics of the universe. Galileo’s Il Saggiatore continues:
[The Universe] is written in the language of mathematics and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering around in a dark labyrinth.
Soon, however, plane geometry would cede preeminence to calculus, without which Newton’s equation of motion and his law of gravitation could not have been formulated.
If the mathematics of the universe in the seventeenth century was calculus, and in the twentieth it was general relativity, what will be the mathematics of the universe in the twenty-first century? Whatever it may turn out to be, it should be able to deal with infinite degrees of freedom in a more powerful way. Just as calculus, originally invented to make sense of velocity and acceleration, has become an essential tool in all areas of sciences and technology, a new framework to deal with infinite degrees of freedoms will find many important applications beyond fundamental physics. I would like to think that the four recent developments in physical mathematics mentioned in Paquette’s essay are simply previews of the rich pastures of infinite analysis, which are waiting to be discovered in mathematics.
Hirosi Ooguri
Hirosi Ooguri is the Fred Kavli Professor of Theoretical Physics and Mathematics and the Founding Director of the Walter Burke Institute for Theoretical Physics at California Institute of Technology.
  1. Freeman Dyson, “Missed Opportunities,” Bulletin of the American Mathematical Society78 (1972): 635–52. 
  2. Cheng-Ning Yang and Robert Mills, “Conservation of Isotopic Spin and Isotopic Gauge Invariance,” Physical Review 96 (1954): 191–95. 
  3. John Napier, Mirifici Logarithmorum Canonis Descriptio (A Description of the Wonderful World of Logarithm) (Edinburgh: A. Hart, 1614). 
  4. Johannes Kepler, Astronomia Nova (New Astronomy) (Prague: 1609); Johannes Kepler, Harmonices Mundi (The Harmony of the World) (Linz: Johann Planck, 1619). 
  5. A fascinating history of The Method can be found in Eviel Netz and William Noel, The Archimedes Codex (Cambridge, MA: Da Capo Press, 2007). 
  6. Although there is a version of the theory that does not require special relativity, the unification with special relativity was the original motivation for the founding papers of quantum field theory by Paul Dirac, Werner Heisenberg, and Wolfgang Pauli during the late 1920’s. Paul Dirac, “The Quantum Theory of the Electron,” Proceedings of the Royal Society A 117 (1928): 610–24; Werner Heisenberg and Wolfgang Pauli, “Zur Quantentheorie der Wellenfelder,” Zeitschrift für Physik 56 (1929): 1–61; Werner Heisenberg and Wolfgang Pauli, “Zur Quantentheorie der Wellenfelder. II,” Zeitschrift für Physik 59 (1930): 168–90. 
  7. Freeman Dyson, “The Radiation Theories of Tomonaga, Schwinger, and Feynman,” Physical Review 75 (1949): 486–502. 
  8. Sidney Coleman, Aspects of Symmetry: Selected Erice Lectures (Cambridge: Cambridge University Press, 1988). 
  9. In 2012, it was renamed the Kavli Institute for the Physics and Mathematics of the Universe. The institute celebrated its tenth anniversary last year. 
  10. Roger Penrose, “Mathematics of the Nature,” Nature 249 (1974): 597–98. 
ゼロ除算の発見は日本です:

∞???
∞は定まった数ではない・・・・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所

ゼロ除算関係論文・本

ソクラテス・プラトン・アリストテレス その他


テーマ:
The null set is conceptually similar to the role of the number ``zero'' as it is used in quantum field theory. In quantum field theory, one can take the empty set, the vacuum, and generate all possible physical configurations of the Universe being modelled by acting on it with creation operators, and one can similarly change from one thing to another by applying mixtures of creation and anihillation operators to suitably filled or empty states. The anihillation operator applied to the vacuum, however, yields zero.

Zero in this case is the null set - it stands, quite literally, for no physical state in the Universe. The important point is that it is not possible to act on zero with a creation operator to create something; creation operators only act on the vacuum which is empty but not zero. Physicists are consequently fairly comfortable with the existence of operations that result in ``nothing'' and don't even require that those operations be contradictions, only operationally non-invertible.

It is also far from unknown in mathematics. When considering the set of all real numbers as quantities and the operations of ordinary arithmetic, the ``empty set'' is algebraically the number zero (absence of any quantity, positive or negative). However, when one performs a division operation algebraically, one has to be careful to exclude division by zero from the set of permitted operations! The result of division by zero isn't zero, it is ``not a number'' or ``undefined'' and is not in the Universe of real numbers.

Just as one can easily ``prove'' that 1 = 2 if one does algebra on this set of numbers as if one can divide by zero legitimately3.34, so in logic one gets into trouble if one assumes that the set of all things that are in no set including the empty set is a set within the algebra, if one tries to form the set of all sets that do not include themselves, if one asserts a Universal Set of Men exists containing a set of men wherein a male barber shaves all men that do not shave themselves3.35.

It is not - it is the null set, not the empty set, as there can be no male barbers in a non-empty set of men (containing at least one barber) that shave all men in that set that do not shave themselves at a deeper level than a mere empty list. It is not an empty set that could be filled by some algebraic operation performed on Real Male Barbers Presumed to Need Shaving in trial Universes of Unshaven Males as you can very easily see by considering any particular barber, perhaps one named ``Socrates'', in any particular Universe of Men to see if any of the sets of that Universe fit this predicate criterion with Socrates as the barber. Take the empty set (no men at all). Well then there are no barbers, including Socrates, so this cannot be the set we are trying to specify as it clearly must contain at least one barber and we've agreed to call its relevant barber Socrates. (and if it contains more than one, the rest of them are out of work at the moment).

Suppose a trial set contains Socrates alone. In the classical rendition we ask, does he shave himself? If we answer ``no'', then he is a member of this class of men who do not shave themselves and therefore must shave himself. Oops. Well, fine, he must shave himself. However, if he does shave himself, according to the rules he can only shave men who don't shave themselves and so he doesn't shave himself. Oops again. Paradox. When we try to apply the rule to a potential Socrates to generate the set, we get into trouble, as we cannot decide whether or not Socrates should shave himself.

Note that there is no problem at all in the existential set theory being proposed. In that set theory either Socrates must shave himself as All Men Must Be Shaven and he's the only man around. Or perhaps he has a beard, and all men do not in fact need shaving. Either way the set with just Socrates does not contain a barber that shaves all men because Socrates either shaves himself or he doesn't, so we shrug and continue searching for a set that satisfies our description pulled from an actual Universe of males including barbers. We immediately discover that adding more men doesn't matter. As long as those men, barbers or not, either shave themselves or Socrates shaves them they are consistent with our set description (although in many possible sets we find that hey, other barbers exist and shave other men who do not shave themselves), but in no case can Socrates (as our proposed single barber that shaves all men that do not shave themselves) be such a barber because he either shaves himself (violating the rule) or he doesn't (violating the rule). Instead of concluding that there is a paradox, we observe that the criterion simply doesn't describe any subset of any possible Universal Set of Men with no barbers, including the empty set with no men at all, or any subset that contains at least Socrates for any possible permutation of shaving patterns including ones that leave at least some men unshaven altogether.

https://webhome.phy.duke.edu/.../axioms/axioms/Null_Set.html

 I understand your note as if you are saying the limit is infinity but nothing is equal to infinity, but you concluded corretly infinity is undefined. Your example of getting the denominator smaller and smalser the result of the division is a very large number that approches infinity. This is the intuitive mathematical argument that plunged philosophy into mathematics. at that level abstraction mathematics, as well as phyisics become the realm of philosophi. The notion of infinity is more a philosopy question than it is mathamatical. The reason we cannot devide by zero is simply axiomatic as Plato pointed out. The underlying reason for the axiom is because sero is nothing and deviding something by nothing is undefined. That axiom agrees with the notion of limit infinity, i.e. undefined. There are more phiplosphy books and thoughts about infinity in philosophy books than than there are discussions on infinity in math books.

http://mathhelpforum.com/algebra/223130-dividing-zero.html


ゼロ除算の歴史:ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。

An Early Reference to Division by Zero C. B. Boyer
http://www.fen.bilkent.edu.tr/~franz/M300/zero.pdf

OUR HUMANITY AND DIVISION BY ZERO

Lea esta bitácora en español
There is a mathematical concept that says that division by zero has no meaning, or is an undefined expression, because it is impossible to have a real number that could be multiplied by zero in order to obtain another number different from zero.
While this mathematical concept has been held as true for centuries, when it comes to the human level the present situation in global societies has, for a very long time, been contradicting it. It is true that we don’t all live in a mathematical world or with mathematical concepts in our heads all the time. However, we cannot deny that societies around the globe are trying to disprove this simple mathematical concept: that division by zero is an impossible equation to solve.
Yes! We are all being divided by zero tolerance, zero acceptance, zero love, zero compassion, zero willingness to learn more about the other and to find intelligent and fulfilling ways to adapt to new ideas, concepts, ways of doing things, people and cultures. We are allowing these ‘zero denominators’ to run our equations, our lives, our souls.
Each and every single day we get more divided and distanced from other people who are different from us. We let misinformation and biased concepts divide us, and we buy into these aberrant concepts in such a way, that we get swept into this division by zero without checking our consciences first.
I believe, however, that if we change the zeros in any of the “divisions by zero” that are running our lives, we will actually be able to solve the non-mathematical concept of this equation: the human concept.
>I believe deep down that we all have a heart, a conscience, a brain to think with, and, above all, an immense desire to learn and evolve. And thanks to all these positive things that we do have within, I also believe that we can use them to learn how to solve our “division by zero” mathematical impossibility at the human level. I am convinced that the key is open communication and an open heart. Nothing more, nothing less.
Are we scared of, or do we feel baffled by the way another person from another culture or country looks in comparison to us? Are we bothered by how people from other cultures dress, eat, talk, walk, worship, think, etc.? Is this fear or bafflement so big that we much rather reject people and all the richness they bring within?
How about if instead of rejecting or retreating from that person—division of our humanity by zero tolerance or zero acceptance—we decided to give them and us a chance?
How about changing that zero tolerance into zero intolerance? Why not dare ask questions about the other person’s culture and way of life? Let us have the courage to let our guard down for a moment and open up enough for this person to ask us questions about our culture and way of life. How about if we learned to accept that while a person from another culture is living and breathing in our own culture, it is totally impossible for him/her to completely abandon his/her cultural values in order to become what we want her to become?
Let’s be totally honest with ourselves at least: Would any of us really renounce who we are and where we come from just to become what somebody else asks us to become?
If we are not willing to lose our identity, why should we ask somebody else to lose theirs?
I believe with all my heart that if we practiced positive feelings—zero intolerance, zero non-acceptance, zero indifference, zero cruelty—every day, the premise that states that division by zero is impossible would continue being true, not only in mathematics, but also at the human level. We would not be divided anymore; we would simply be building a better world for all of us.
Hoping to have touched your soul in a meaningful way,
Adriana Adarve, Asheville, NC
https://adarvetranslations.com/…/our-humanity-and-division…/

5000年?????

2017年09月01日(金)NEW !
テーマ:数学
Former algebraic approach was formally perfect, but it merely postulated existence of sets and morphisms [18] without showing methods to construct them. The primary concern of modern algebras is not how an operation can be performed, but whether it maps into or onto and the like abstract issues [19–23]. As important as this may be for proofs, the nature does not really care about all that. The PM’s concerns were not constructive, even though theoretically significant. We need thus an approach that is more relevant to operations performed in nature, which never complained about morphisms or the allegedly impossible division by zero, as far as I can tell. Abstract sets and morphisms should be de-emphasized as hardly operational. My decision to come up with a definite way to implement the feared division by zero was not really arbitrary, however. It has removed a hidden paradox from number theory and an obvious absurd from algebraic group theory. It was necessary step for full deployment of constructive, synthetic mathematics (SM) [2,3]. Problems hidden in PM implicitly affect all who use mathematics, even though we may not always be aware of their adverse impact on our thinking. Just take a look at the paradox that emerges from the usual prescription for multiplication of zeros that remained uncontested for some 5000 years 0 0 ¼ 0 ) 0 1=1 ¼ 0 ) 0 1 ¼ 0 1) 1ð? ¼ ?Þ1 ð0aÞ This ‘‘fact’’ was covered up by the infamous prohibition on division by zero [2]. How ingenious. If one is prohibited from dividing by zero one could not obtain this paradox. Yet the prohibition did not really make anything right. It silenced objections to irresponsible reasonings and prevented corrections to the PM’s flamboyant axiomatizations. The prohibition on treating infinity as invertible counterpart to zero did not do any good either. We use infinity in calculus for symbolic calculations of limits [24], for zero is the infinity’s twin [25], and also in projective geometry as well as in geometric mapping of complex numbers. Therein a sphere is cast onto the plane that is tangent to it and its free (opposite) pole in a point at infinity [26–28]. Yet infinity as an inverse to the natural zero removes the whole absurd (0a), for we obtain [2] 0 ¼ 1=1 ) 0 0 ¼ 1=12 > 0 0 ð0bÞ Stereographic projection of complex numbers tacitly contradicted the PM’s prescribed way to multiply zeros, yet it was never openly challenged. The old formula for multiplication of zeros (0a) is valid only as a practical approximation, but it is group-theoretically inadmissible in no-nonsense reasonings. The tiny distinction in formula (0b) makes profound theoretical difference for geometries and consequently also for physical applications. T
https://www.plover.com/misc/CSF/sdarticle.pdf

とても興味深く読みました:


10,000 Year Clock
by Renny Pritikin
Conversation with Paolo Salvagione, lead engineer on the 10,000-year clock project, via e-mail in February 2010.

For an introduction to what we’re talking about here’s a short excerpt from a piece by Michael Chabon, published in 2006 in Details: ….Have you heard of this thing? It is going to be a kind of gigantic mechanical computer, slow, simple and ingenious, marking the hour, the day, the year, the century, the millennium, and the precession of the equinoxes, with a huge orrery to keep track of the immense ticking of the six naked-eye planets on their great orbital mainspring. The Clock of the Long Now will stand sixty feet tall, cost tens of millions of dollars, and when completed its designers and supporters plan to hide it in a cave in the Great Basin National Park in Nevada, a day’s hard walking from anywhere. Oh, and it’s going to run for ten thousand years. But even if the Clock of the Long Now fails to last ten thousand years, even if it breaks down after half or a quarter or a tenth that span, this mad contraption will already have long since fulfilled its purpose. Indeed the Clock may have accomplished its greatest task before it is ever finished, perhaps without ever being built at all. The point of the Clock of the Long Now is not to measure out the passage, into their unknown future, of the race of creatures that built it. The point of the Clock is to revive and restore the whole idea of the Future, to get us thinking about the Future again, to the degree if not in quite the way same way that we used to do, and to reintroduce the notion that we don’t just bequeath the future—though we do, whether we think about it or not. We also, in the very broadest sense of the first person plural pronoun, inherit it.

Renny Pritikin: When we were talking the other day I said that this sounds like a cross between Borges and the vast underground special effects from Forbidden Planet. I imagine you hear lots of comparisons like that…

Paolo Salvagione: (laughs) I can’t say I’ve heard that comparison. A childhood friend once referred to the project as a cross between Tinguely and Fabergé. When talking about the clock, with people, there’s that divide-by-zero moment (in the early days of computers to divide by zero was a sure way to crash the computer) and I can understand why. Where does one place, in one’s memory, such a thing, such a concept? After the pause, one could liken it to a reboot, the questions just start streaming out.

RP: OK so I think the word for that is nonplussed. Which the thesaurus matches with flummoxed, bewildered, at a loss. So the question is why even (I assume) fairly sophisticated people like your friends react like that. Is it the physical scale of the plan, or the notion of thinking 10,000 years into the future—more than the length of human history?

PS: I’d say it’s all three and more. I continue to be amazed by the specificity of the questions asked. Anthropologists ask a completely different set of questions than say, a mechanical engineer or a hedge fund manager. Our disciplines tie us to our perspectives. More than once, a seemingly innocent question has made an impact on the design of the clock. It’s not that we didn’t know the answer, sometimes we did, it’s that we hadn’t thought about it from the perspective of the person asking the question. Back to your question. I think when sophisticated people, like you, thread this concept through their own personal narrative it tickles them. Keeping in mind some people hate to be tickled.

RP: Can you give an example of a question that redirected the plan? That’s really so interesting, that all you brainiacs slaving away on this project and some amateur blithely pinpoints a problem or inconsistency or insight that spins it off in a different direction. It’s like the butterfly effect.

PS: Recently a climatologist pointed out that our equation of time cam, (photo by Rolfe Horn) (a cam is a type of gear: link) a device that tracks the difference between solar noon and mundane noon as well as the precession of the equinoxes, did not account for the redistribution of water away from the earth’s poles. The equation-of-time cam is arguably one of the most aesthetically pleasing parts of the clock. It also happens to be one that is fairly easy to explain. It visually demonstrates two extremes. If you slice it, like a loaf of bread, into 10,000 slices each slice would represent a year. The outside edge of the slice, let’s call it the crust, represents any point in that year, 365 points, 365 days. You could, given the right amount of magnification, divide it into hours, minutes, even seconds. Stepping back and looking at the unsliced cam the bottom is the year 2000 and the top is the year 12000. The twist that you see is the precession of the equinoxes. Now here’s the fun part, there’s a slight taper to the twist, that’s the slowing of the earth on its axis. As the ice at the poles melts we have a redistribution of water, we’re all becoming part of the “slow earth” movement.

RP: Are you familiar with Charles Ray’s early work in which you saw a plate on a table, or an object on the wall, and they looked stable, but were actually spinning incredibly slowly, or incredibly fast, and you couldn’t tell in either case? Or, more to the point, Tim Hawkinson’s early works in which he had rows of clockwork gears that turned very very fast, and then down the line, slower and slower, until at the end it approached the slowness that you’re dealing with?

PS: The spinning pieces by Ray touches on something we’re trying to avoid. We want you to know just how fast or just how slow the various parts are moving. The beauty of the Ray piece is that you can’t tell, fast, slow, stationary, they all look the same. I’m not familiar with the Hawkinson clockwork piece. I’ve see the clock pieces where he hides the mechanism and uses unlikely objects as the hands, such as the brass clasp on the back of a manila envelope or the tab of a coke can.

RP: Spin Sink (1 Rev./100 Years) (1995), in contrast, is a 24-foot-long row of interlocking gears, the smallest of which is driven by a whirring toy motor that in turn drives each consecutively larger and more slowly turning gear up to the largest of all, which rotates approximately once every one hundred years.

PS: I don’t know how I missed it, it’s gorgeous. Linking the speed that we can barely see with one that we rarely have the patience to wait for.

RP: : So you say you’ve opted for the clock’s time scale to be transparent. How will the clock communicate how fast it’s going?

PS: By placing the clock in a mountain we have a reference to long time. The stratigraphy provides us with the slowest metric. The clock is a middle point between millennia and seconds. Looking back 10,000 years we find the beginnings of civilization. Looking at an earthenware vessel from that era we imagine its use, the contents, the craftsman. The images painted or inscribed on the outside provide some insight into the lives and the languages of the distant past. Often these interpretations are flawed, biased or over-reaching. What I’m most enchanted by is that we continue to construct possible pasts around these objects, that our curiosity is overwhelming. We line up to see the treasures of Tut, or the remains of frozen ancestors. With the clock we are asking you to create possible futures, long futures, and with them the narratives that made them happen.

https://openspace.sfmoma.org/2010/02/10000-year-clock/

ダ・ヴィンチの名言 格言|無こそ最も素晴らしい存在
 

ゼロ除算の発見はどうでしょうか:
Black holes are where God divided by zero:

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 
https://ameblo.jp/syoshinoris/entry-12287338180.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html

ソクラテス・プラトン・アリストテレス その他
https://ameblo.jp/syoshinoris/entry-12328488611.html

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか
https://www.youtube.com/watch?v=iQld9cnDli4
〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか
https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s
〔NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか
https://www.youtube.com/watch?v=KjvFdzhn7Dc
NHKスペシャル 神の数式 完全版 第4回 異次元宇宙は存在するか
https://www.youtube.com/watch?v=fWVv9puoTSs

再生核研究所声明 411(2018.02.02):  ゼロ除算発見4周年を迎えて
https://ameblo.jp/syoshinoris/entry-12348847166.html

再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
再生核研究所声明 417(2018.2.23):  ゼロ除算って何ですか - 中学生、高校生向き 回答
再生核研究所声明 418(2018.2.24):  割り算とは何ですか? ゼロ除算って何ですか - 小学生、中学生向き 回答
再生核研究所声明 420(2018.3.2): ゼロ除算は正しいですか,合っていますか、信用できますか - 回答

2018.3.18.午前中 最後の講演: 日本数学会 東大駒場、函数方程式論分科会 講演書画カメラ用 原稿
The Japanese Mathematical Society, Annual Meeting at the University of Tokyo. 2018.3.18.
https://ameblo.jp/syoshinoris/entry-12361744016.html より

*057 Pinelas,S./Caraballo,T./Kloeden,P./Graef,J.(eds.): Differential and Difference Equations with Applications: ICDDEA, Amadora, 2017. (Springer Proceedings in Mathematics and Statistics, Vol. 230) May 2018 587 pp. 

再生核研究所声明 424(2018.3.29):  レオナルド・ダ・ヴィンチとゼロ除算
 再生核研究所声明 427(2018.5.8): 神の数式、神の意志 そしてゼロ除算

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

私は数学を信じない。 アルバート・アインシュタイン / I don't believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。
1423793753.460.341866474681

Einstein's Only Mistake: Division by Zero


ゼロ除算は定義が問題です:

再生核研究所声明 148(2014.2.12) 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志 https://blogs.yahoo.co.jp/kbdmm360/69056435.html

再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?http://reproducingkernel.blogspot.jp/2014/07/201473010000.html


Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

私は数学を信じない。 アルバート・アインシュタイン / I don't believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。1423793753.460.341866474681

Einstein's Only Mistake: Division by Zero

#divide by zero

TOP DEFINITION
  
A super-smart math teacher that teaches at HTHS and can divide by zero.
Hey look, that genius’s IQ is over 9000!
by Lawlbags! October 21, 2009


Dividing by zero is the biggest epic fail known to mankind. It is a proven fact that a succesful division by zero will constitute in the implosion of the universe.
You are dividing by zero there, Johnny. Captain Kirk is not impressed.

Divide by zero?!?!! OMG!!! Epic failzorz

3
  
Divide by zero is undefined.
Divide by zero is undefined.
by JaWo October 28, 2006

1) The number one ingredient for a catastrophic event in which the universe enfolds and collapses on itself and life as we know it ceases to exist.

2) A mathematical equation such as a/0 whereas a is some number and 0 is the divisor. Look it up on Wikipedia or something. Pretty confusing shit.

3) A reason for an error in programming
Hey, I divided by zero! ...Oh shi-

a/0

Run-time error: '11': Division by zero
by DefectiveProduct September 08, 2006

When even math shows you that not everything can be figured out with math. When you divide by zero, math kicks you in the shins and says "yeah, there's kind of an answer, but it ain't just some number."

It's when mathematicians become philosophers.
Math:
Let's say you have ZERO apples, and THREE people. How many apples does each person get? ZERO, cause there were no apples to begin with

Not-math because of dividing by zero:
Let's say there are THREE apples, and ZERO people. How many apples does each person get? Friggin... How the Fruitcock should I know! How can you figure out how many apples each person gets if there's no people to get them?!? You'd think it'd be infinity, but not really. It could almost be any number, cause you could be like "each person gets 400 apples" which would be true, because all the people did get 400 apples, because there were no people. So all the people also got 42 apples, and a million and 7 apples. But it's still wrong.
by Zacharrie February 15, 2010