2018年6月5日火曜日

たしなみの文化考 /13 DJ・タレント 谷口キヨコさんの哲学 「対話とは」刺激的な冒険 「生きる意味って?」大学院入学 実のある言葉を伝えるために

/13 DJ・タレント 谷口キヨコさんの哲学

「対話とは」刺激的な冒険 「生きる意味って?」大学院入学 実のある言葉を伝えるために

 「関西ラジオ界の女王」の異名をとるDJ・タレントの谷口キヨコさん。愛らしい声でハイテンションな話を繰り広げ、“キヨピー”の愛称で親しまれているが、本業からはうかがいしれない一面も持つ。日本を代表する哲学者の鷲田清一さん(現京都市立芸術大学長)に師事すること4年、修士論文を書き上げ、今年3月に大学院を修了した。人気DJが二足のわらじを履いて、内なる問いをじっくりと深めた4年間を聞いた。
 さっそうとエフエム京都(京都市下京区)のスタジオに現れた谷口さん。「昨日はカラオケ行って、ヒデキを歌いました」と語り出す。ヒデキこと西城秀樹さんの訃報に触れ、しんみりとしながらもどこかくだけた彼女のトークは周囲を引き込む。
 谷口さんが大谷大学大学院文学研究科哲学専攻に入学したのは2014年4月。50歳代を迎えようとしていた当時「生きるとは? 死ぬとは? とか、もやーんとした疑問があった」。知り合いが突然病気で亡くなるなどの出来事もあった。「やりたいことを思うままにやってきたけど、形になるものは何もない。自分が生きる意味って何なんやろう。このままでは答えは出えへんかも。もしかしたら哲学を勉強したらわかるかな」。そんな思いが高まり、著作を愛読していた鷲田さんが大阪大学長を退任後、谷口さんが住む京都市内の大谷大学に移ったことも知り、門をたたいた。
 かくして“鷲田門下生”となった谷口さん。仕事の傍ら週に1、2回大学に通い、哲学の基礎から学び直し、原書にあたれるように初めてドイツ語も学んだ。「哲学をやりたい」という意思は明確だったが、具体的な題材はぼんやりしており、まずはギリシャ哲学のプラトンや河合隼雄さんの著作などをむさぼり読んだ。そして、3年目にたどり着いた研究テーマは「対話は人間にとってどういう出来事なのか」ということだった。
 「私は人と話す仕事が大好きで、それが生きていくことなんやなと改めて思った」。1人で考えていた時には見つからなかった言葉が会話することで発見できたり、思わぬ言葉が口をついて出たり……。普段感じる会話の魅力からわき上がった問いと向き合った。題材はオーストリアで生まれたユダヤ人宗教哲学者マルティン・ブーバー(1878~1965年)の「我と汝(なんじ)」(1923年)。対話についての古典であるこの書は抽象的で難解だ。出版されている二つの日本語訳を読み比べ、時にはドイツ語の原典を調べたり、研究者に見解を聞きに行ったりとどっぷりブーバーの世界に入った。「寝ていても、その世界にいるような不思議な感覚でした」
 途中で投げ出したくもなったが「働いているからこそ、外から自分を見る感じでちょっとおもしろかった」と本業とは別の時間を楽しむ余裕も持てた。考え続けて、行き着いたのは「対話の成立を通してこそ私は私になれる」という答えだった。
 哲学を志したのは真剣に「考えること」に取り組みたかったからでもあるという。だが、私たちは疑問があっても、多忙な日々に流されて思索を諦めてしまうことも多い。どうして谷口さんは立ち止まることができたのか? 記者が尋ねると「それはオンエアでモノを言うからです」ときっぱり。「いいかげんなことは言えないでしょ。知らなかったでは済まされない。いろんなやり方があるけど、大学で勉強することが一つの形だった」。向学心には言葉に最大の配慮をするプロの覚悟がにじむ。
 今でも大学院に顔を出し、哲学カフェにも参加する。考える行為が体に染み込んだDJキヨピーはどう違うのか。「私独自の解釈で映画紹介などできればいいな。アーティストの方たちとの対話も重ねていきたい」と瞳を輝かせた。【野口由紀】=次回は7月3日

学究肌の一面 語学留学、大学客員教授も

 現在、レギュラー番組は8本。エフエム大阪「LOVE FLAP」(谷口さん担当は月・火曜午前11時半~午後3時51分)、エフエム京都「CHUMMY TRAIN」(金曜午後4時~午後8時)、「J-AC TOP40」(土曜午後2時~午後7時)など長寿番組が多い。オンエアでは水を得た魚のように軽快なトークを繰り広げ、「一日でも長くこの仕事をしていたい」としみじみと語る。
 「何事も没頭するタイプ」(マネジャー)で、10年ほど前から学究肌の一面が表れてきた。2006年、韓国の大学に1カ月語学留学。番組でスタジオに招いたK-POPのゲストと韓国語でやりとりができるほど堪能だ。08年には母校の京都産業大の大学院に社会人入学し、国際法を専攻。国連安全保障理事会をテーマに修士論文を書き上げた。今年4月、京産大現代社会学部の客員教授に就任し、春・秋学期各1回の授業を担当し、メディアに関心を持つ学生に自身の経験を語る。

 ■人物略歴

たにぐち・きよこ

 兵庫県宝塚市出身。京都市在住。大学卒業後、会社員を経て、知人の紹介でDJ・タレントになった。関西のテレビ・ラジオを中心に活躍する。https://mainichi.jp/articles/20180605/ddn/013/040/043000c

ゼロ除算の発見は日本です:

∞???
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所

ゼロ除算関係論文・本

ソクラテス・プラトン・アリストテレス その他


テーマ:
The null set is conceptually similar to the role of the number ``zero'' as it is used in quantum field theory. In quantum field theory, one can take the empty set, the vacuum, and generate all possible physical configurations of the Universe being modelled by acting on it with creation operators, and one can similarly change from one thing to another by applying mixtures of creation and anihillation operators to suitably filled or empty states. The anihillation operator applied to the vacuum, however, yields zero.

Zero in this case is the null set - it stands, quite literally, for no physical state in the Universe. The important point is that it is not possible to act on zero with a creation operator to create something; creation operators only act on the vacuum which is empty but not zero. Physicists are consequently fairly comfortable with the existence of operations that result in ``nothing'' and don't even require that those operations be contradictions, only operationally non-invertible.

It is also far from unknown in mathematics. When considering the set of all real numbers as quantities and the operations of ordinary arithmetic, the ``empty set'' is algebraically the number zero (absence of any quantity, positive or negative). However, when one performs a division operation algebraically, one has to be careful to exclude division by zero from the set of permitted operations! The result of division by zero isn't zero, it is ``not a number'' or ``undefined'' and is not in the Universe of real numbers.

Just as one can easily ``prove'' that 1 = 2 if one does algebra on this set of numbers as if one can divide by zero legitimately3.34, so in logic one gets into trouble if one assumes that the set of all things that are in no set including the empty set is a set within the algebra, if one tries to form the set of all sets that do not include themselves, if one asserts a Universal Set of Men exists containing a set of men wherein a male barber shaves all men that do not shave themselves3.35.

It is not - it is the null set, not the empty set, as there can be no male barbers in a non-empty set of men (containing at least one barber) that shave all men in that set that do not shave themselves at a deeper level than a mere empty list. It is not an empty set that could be filled by some algebraic operation performed on Real Male Barbers Presumed to Need Shaving in trial Universes of Unshaven Males as you can very easily see by considering any particular barber, perhaps one named ``Socrates'', in any particular Universe of Men to see if any of the sets of that Universe fit this predicate criterion with Socrates as the barber. Take the empty set (no men at all). Well then there are no barbers, including Socrates, so this cannot be the set we are trying to specify as it clearly must contain at least one barber and we've agreed to call its relevant barber Socrates. (and if it contains more than one, the rest of them are out of work at the moment).

Suppose a trial set contains Socrates alone. In the classical rendition we ask, does he shave himself? If we answer ``no'', then he is a member of this class of men who do not shave themselves and therefore must shave himself. Oops. Well, fine, he must shave himself. However, if he does shave himself, according to the rules he can only shave men who don't shave themselves and so he doesn't shave himself. Oops again. Paradox. When we try to apply the rule to a potential Socrates to generate the set, we get into trouble, as we cannot decide whether or not Socrates should shave himself.

Note that there is no problem at all in the existential set theory being proposed. In that set theory either Socrates must shave himself as All Men Must Be Shaven and he's the only man around. Or perhaps he has a beard, and all men do not in fact need shaving. Either way the set with just Socrates does not contain a barber that shaves all men because Socrates either shaves himself or he doesn't, so we shrug and continue searching for a set that satisfies our description pulled from an actual Universe of males including barbers. We immediately discover that adding more men doesn't matter. As long as those men, barbers or not, either shave themselves or Socrates shaves them they are consistent with our set description (although in many possible sets we find that hey, other barbers exist and shave other men who do not shave themselves), but in no case can Socrates (as our proposed single barber that shaves all men that do not shave themselves) be such a barber because he either shaves himself (violating the rule) or he doesn't (violating the rule). Instead of concluding that there is a paradox, we observe that the criterion simply doesn't describe any subset of any possible Universal Set of Men with no barbers, including the empty set with no men at all, or any subset that contains at least Socrates for any possible permutation of shaving patterns including ones that leave at least some men unshaven altogether.

https://webhome.phy.duke.edu/.../axioms/axioms/Null_Set.html

 I understand your note as if you are saying the limit is infinity but nothing is equal to infinity, but you concluded corretly infinity is undefined. Your example of getting the denominator smaller and smalser the result of the division is a very large number that approches infinity. This is the intuitive mathematical argument that plunged philosophy into mathematics. at that level abstraction mathematics, as well as phyisics become the realm of philosophi. The notion of infinity is more a philosopy question than it is mathamatical. The reason we cannot devide by zero is simply axiomatic as Plato pointed out. The underlying reason for the axiom is because sero is nothing and deviding something by nothing is undefined. That axiom agrees with the notion of limit infinity, i.e. undefined. There are more phiplosphy books and thoughts about infinity in philosophy books than than there are discussions on infinity in math books.

http://mathhelpforum.com/algebra/223130-dividing-zero.html


ゼロ除算の歴史:ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。

An Early Reference to Division by Zero C. B. Boyer
http://www.fen.bilkent.edu.tr/~franz/M300/zero.pdf

ゼロ除算(division by zero)

1/0=0、0/0=0、z/0=0


テーマ:
これは最も簡単な 典型的なゼロ除算の結果と言えます。 ユークリッド以来の驚嘆する、誰にも分る結果では ないでしょうか?

Hiroshi O. Is It Really Impossible To Divide By Zero?. Biostat Biometrics Open Acc J. 2018; 7(1): 555703.  DOI: 10.19080/BBOJ.2018.07.555703
ゼロで分裂するのは本当に不可能ですか? - Juniper Publishers


0 件のコメント:

コメントを投稿