2017年6月2日金曜日

Einstein's unique way of thinking contributed to his genius

NEW !
テーマ:
2017/05/27 に公開
Robbert Dijkgraaf is a theoretical physicist and Leon Levy Professor at the Institute for Advanced Study in Princeton. He is also the co-author of "The Usefulness of Useless Knowledge."

In this video, he explains how Albert Einstein saw the world in a different way from how most scientists see it. Following is a transcript of the video.

Einstein was a true genius and it’s the example that we all aspire to be as a scientist. But already as a child he had a very original way of thinking.

So from the very beginning, for Einstein, his imagination was crucial. He was not such a good student because he was a very original thinker.

And I think that was, kind of, the magic touch that he had. He always had a completely original point of view. He somehow didn’t conform to the existing theories, and he was always thinking in his own particular way.

His favorite way to operate as a scientist was the thought experiment. And he describes for instance, the crucial moment, where he essentially discovered the theory of general relativity.

He was watching workers on the roof of a building and suddenly thought whoa what would happen if they fell down. And then he realized, if you fall down, you no longer experience gravity.

And that, in some sense, that’s the natural motion and that actual led him to derive the theory of general relativity and described that moment as the happiest moment in his life.

And later he said something that I actually find personally very comforting: Is that imagination is much more important than knowledge because knowledge describes what we know. Imagination is describing everything that we can potentially know in the future.

大変興味深く見ました:

再生核研究所声明 277(2016.01.26)アインシュタインの数学不信 ― 数学の欠陥

(山田正人さん:散歩しながら、情念が湧きました:2016.1.17.10時ころ 散歩中)

西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ようやく四則演算の法則が確立された。ゼロで割れば、何時でもゼロになるという美しい関係が発見された。ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。
しかしながら、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論にゼロ除算は公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。そればかりではなく、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。
そこで、この矛盾、ゼロ除算の解釈による矛盾に アインシュタインが深刻に悩んだものと思考される。実際 アインシュタインは 数学不信を公然と 述べている:

What does Einstein mean when he says, "I don't believe in math"?
アインシュタインの数学不信の主因は アインシュタインが 難解で抽象的な数学の理論に嫌気が差したものの ゼロ除算の間違った数学のためである と考えられる。(次のような記事が見られるが、アインシュタインが 逆に間違いをおかしたのかは 大いに気になる:Sunday, 20 May 2012
Einstein's Only Mistake: Division by Zero)

簡単なゼロ除算について 1300年を超える過ちは、数学界の歴史的な汚点であり、物理学や世界の文化の発展を遅らせ、それで、人類は 猿以下の争いを未だに続けていると考えられる。
数学界は この汚名を速やかに晴らして、数学の欠陥部分を修正、補充すべきである。 そして、今こそ、アインシュタインの数学不信を晴らすべきときである。数学とは本来、完全に美しく、永遠不滅の、絶対的な存在である。― 実際、数学の論理の本質は 人類が存在して以来 どんな変化も認められない。数学は宇宙の運動のように人間を離れた存在である。
再生核研究所声明で述べてきたように、ゼロ除算は、数学、物理学ばかりではなく、広く人生観、世界観、空間論を大きく変え、人類の夜明けを切り拓く指導原理になるものと思考される。
以 上

Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India


再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題

Googleサイトなどを参照すると ゼロ除算の話題は 膨大であり、世にも珍しい現象と言える(division by zero: 約298 000 000結果(0.51秒)
検索結果
https://en.wikipedia.org/wiki/ Division_by_zero
数学では、ゼロ除算は、除数(分母)がゼロである部門です。このような部門が正式に配当である/ 0をエスプレッソすることができます(2016.1.19.13:45)).

問題の由来は、西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。しかしながら、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。
確定した数学に対していろいろな存念が湧き、話題が絶えないことは 誠に奇妙なことと考えられる。ゼロ除算には 何か問題があるのだろうか。
先ず、多くの人の素朴な疑問は、加減乗除において、ただひとつの例外、ゼロで割ってはいけないが、奇妙に見えることではないだろうか。例外に気を惹くは 何でもそうであると言える。しかしながら、より広範に湧く疑問は、物理の基本法則である、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論に ゼロ除算が公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。それゆえにブラックホール等の議論とともに話題を賑わしてきている。最近でも特殊相対性理論とゼロ除算、計算機科学や論理の観点でゼロ除算が学術的に議論されている。次のような極めて重要な言葉が残されている:
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970

スマートフォン等で、具体的な数字をゼロで割れば、答えがまちまち、いろいろなジョーク入りの答えが出てくるのも興味深い。しかし、計算機がゼロ除算にあって、実際的な障害が起きた:

ヨークタウン (ミサイル巡洋艦)ヨークタウン(USS Yorktown, DDG-48/CG-48)は、アメリカ海軍ミサイル巡洋艦タイコンデロガ級ミサイル巡洋艦の2番艦。艦名はアメリカ独立戦争ヨークタウンの戦いにちなみ、その名を持つ艦としては5隻目。
艦歴[編集]
1997921日バージニア州ケープ・チャールズ沿岸を航行中に、乗組員がデータベースフィールドに0を入力したために艦に搭載されていたRemote Data Base Managerゼロ除算エラーが発生し、ネットワーク上の全てのマシンのダウンを引き起こし2時間30分にわたって航行不能に陥った。 これは搭載されていたWindows NT 4.0そのものではなくアプリケーションによって引き起こされたものだったが、オペレーティングシステムの選択への批判が続いた。[1]
2004年12月3日に退役した。
出典・脚注[編集]
1.     ^ Slabodkin, Gregory (1998年7月13日). “Software glitches leave Navy Smart Ship dead in the water”. Government Computer News. 2009年6月18日閲覧。
 これはゼロ除算が不可能であるから、計算機がゼロ除算にあうと、ゼロ除算の誤差動で重大な事故につながりかねないことを実証している。それでゼロ除算回避の数学を考えている研究者もいる。論理や計算機構造を追求して、代数構造を検討したり、新しい数を導入して、新しい数体系を提案している。

確立している数学について話題が尽きないのは、思えば、ゼロ除算について、何か本質的な問題があるのだろうかと考えられる。 火のないところに煙は立たないという諺がある。 ゼロ除算は不可能であると 考えるか、無限遠点の概念、無限か と考えるのが 数百年間を超える数学の定説であると言える。
ところがその定説が、 思いがけない形で、完全に覆り、ゼロ除算は何時でも可能で、ゼロで割れば何時でもゼロになるという美しい結果が 2014.2.2 発見された。 結果は3篇の論文に既に出版され、日本数会でも発表され、大きな2つの国際会議でも報告されている。 ゼロ除算の詳しい解説も次で行っている:
 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは

また、再生核研究所声明の中でもいろいろ解説している。


以 上

再生核研究所声明3672017.5.18)数学の真実を求める方、数学の研究と教育に責任を感じる方へ
(「明日ありと 思う心の仇桜 夜半に嵐の 吹かぬものかは」 ― 親鸞聖人)
そもそも数学とは何だろうかと問うことは大事である。しかしながら、生きる意味を問うことは より根源的で大事な問いである。数学についても人生についても述べてきた:(No.81、2012年5月(PDFファイル432キロバイト) -数学のための国際的な社会...www.jams.or.jp/kaiho/kaiho-81.pdf)。
数学とは、公理系、仮定系を設定すると、このようなことが言えるというものである。公理系の上に、いろいろな概念や定義を導入して数学は発展するがその全貌や本質を捉えることは何時まで経っても人間の能力を超えた存在で不可能であろう。しかしながら、人それぞれの好みを越えて、完成された理論は人間を越えて存在する客観性を有すると信じられている。万有引力の法則など物理法則より数学の理論は不変で確かな存在であろう。
数学が関係の編みのようなものであると見れば、数学の発展の先や全貌は 人間を越えて本質的には存在すると言える。例えばニュートンの万有引力の発見は、物理学の発展から必然的と言えるが、数学の発展の先はそれよりも必然的であると考えられる。その意味では、数学では特に要求されない限り、じっくりと落ち着いて楽しむように研究を進められるであろう。
ところで、ゼロで割る問題、ゼロ除算であるが、これは誠に奇妙な歴史的な事件であると言える。
ゼロで割れないは 小学校以来の世界の常識であり、アリストテレス以来の考えであると言う。オイラーやアインシュタインなども直接関わり、数学的には確定していたが、不可能性に対する興味とともに、計算機科学と相対性の理論の関係で今でも議論が続けられている。
ところが、誠に奇妙な事実が存在する。ゼロの発見者、マイナスの数も考え、算術の四則演算を確立されたBrahmagupta (598 -668 ?) は 既に、そこで628年、0/0=0 と定義していたという。しかしながら、それは間違いであると 今でも判断されていて今日に至っている。今でもゼロ除算について諸説が有って、世界やグーグルの世界でも混乱している。何十年も研究を続けて、本を出版したり、論文を公表している者が4,5人、あるいはグループで研究している者もいるが、それらは間違いである、不適当であると説得を続けている。ゼロ除算について無駄な議論や情報が世界に氾濫していると言える。
再生核研究所では、ゼロ除算発見3周年を経過し、広く議論してきたので、ゼロ除算の発見を宣言している(Announcement 362: Discovery of the division by zero as $0/0=1/0=z/0=0$ (2017.5.5)})。詳しい解説も3年間続け
(数学基礎学力研究会のホームページ
URL
、論文も発表、学会、国際会議などでも報告してきている。
何と創始者の結果は実は正しく、適当であることが沢山の数学の具体的な例と発展から、明らかにされてきた。ところがゼロ除算は、アリストテレスの連続性の概念を変え、2000年以上の伝統を有するユークリッド空間に全く新しい面が加わり、現代数学の初歩全般に大きな影響を与えることが分かってきた。
我々の空間の認識は間違っており我々が学んでいる数学は、基本的なところで、欠落していて、真実とはかなり程遠く、実は数学はより完全でもっと美しいことが分かってきた。我々は年々不完全で不適当な数学を教えていると言える。
このような多くの大きな変化にはとても個人では対応できず、対応には大きな力が必要であるから、数学の愛好者や、研究者、教育者などの積極的な協力、教育、研究活動への参画、理解、援助などをお願い致したい。ゼロ除算の歴史は 人類の恥になるだろう。人々はゼロ除算の発展から、人間とはどのようなものかを沢山 学べるのではないだろうか。
以 上

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

1/0=0、0/0=0、z/0=0


再生核研究所声明3662017.5.16微分方程式論の不備 ― 不完全性
(2017.5.14.9 時頃 山間部を散歩している時に 自然に構想が湧いた。)
数学の論理の厳格さ、厳密性は ジョルダンの閉曲線定理 が有名であるが、デデキンドの連続性公理、ワイエルシュトラスの最大値、最小値の存在定理、中間値の定理なども有名である。数学専攻学生の初期における ゼミナールの指導精神は、厳格な論理的思考の訓練にあると考えられる。この態度は 数学者の精神の基礎で、世情でも数学者との論争は手ごわいと見られているのではないだろうか。論理に隙や飛躍がないからである。逆に見ると、数学者が確立した理論は 恰も不滅の、不変の真理のように思われている、考えられているのではないだろうか。
この観点で、日本の著名な代表著書 高木貞治氏の解析概論は、模範的な数学書で、完璧な記述でまるで芸術作品のようである。
年々数学の著書が数多く出版されているが、著者たちは まずは、間違いのない記述に気を遣ってきていると考えられる。
ここ2年くらい、ゼロ除算の発見で、主に初等数学、学部レベルの教科書を相当参照してきている。実際、ゼロ除算が 数学にどのような影響を与えるかの基礎を見るには、基礎的な数学への関係を見れば、基本的な状況が捉えられると考えたからである。 
ゼロ除算の影響は、初等幾何学、解析幾何学、線形代数学、微積分学、微分方程式、複素解析学、力学など広範囲に及び、初等数学全般に及ぶことが明らかにされてきた。
ところが、数学の多くの著書のうちでも、微分方程式論では、現在の版でも相当に隙や論理の飛躍、扱いの不統一さなど、数学書としては 他の分野の著書に比べて ちぐはぐ、隙だらけに見えて来た。微分方程式論は不完全な状況であると言える。このことを簡潔に、具対的に指摘したい。未知の相当な世界にも触れたい。
先ず、微分方程式の定義である。普通は導関数を含む方程式を微分方程式と称する。このとき導関数とは何だろうか。関数に微分係数を対応させて、微分によって導かられた関数が導関数であるから、微分方程式には関数が定義されていなくてはならない。普通は1変数関数ならばxの関数 y=f(x) などと考え、その導関数を含む方程式を考えるだろう。例として考えられるのは、原点を中心とする半径aの円群が満たす例として多くの教科書の初期に 微分方程式の例が挙げられる。このとき、円はy軸に平行な接線を持つから その点で微分係数は存在しないと考えられるから、ただでは円群の満たす微分方程式とは言えず、微分方程式を満たさない点が存在することになってしまう。数学としては初めから、格好が悪いと言える。多くの微分方程式でこのことは広く問題になる。― ここの説明を上手くするために 都合の悪いところで、独立変数と従属変数を変えて、そこで考えれば良いという意見を頂いたが、少し人為的、最初の議論としてはあまり良いとは言えないのではないだろうか。
ところがゼロ除算で考えると、何とy軸に平行な接線の接点で、関数は微分可能で、微分係数の値、勾配はゼロであることが ゼロ除算の拓いた重要な知見、結果である。すると、微分方程式 dy/dx= - x/y は至るところで、円によって満たされるとなる。念のため、(a,0) で (dy/dx)(a)= - a/0=0 である。
この初歩的な結果は、微分方程式論に大きな影響を与える。解析関数の孤立特異点で、自然な意味で、値と微分係数を定義できるから、微分方程式を孤立特異点そのものでも考えることができるという、広い世界が拓かれてくる。微分方程式論を孤立特異点まで含めて議論する広い世界である。そもそも従来は、孤立特異点の孤立点を除いた近傍で数学を議論してきた。孤立特異点そのところでは数学を考えて来なかったのである。
ゼロ除算が拓いたゼロ除算算法は 解析関数の孤立特異点で有限確定値を与え、それらが自然な意味を持つから、微分方程式と微分方程式の解の孤立特異点での値の性質を調べる雄大な分野が存在する。
要するに、数理科学の数式で、分母がゼロになる膨大な数式で、ゼロ除算算法で孤立特異点で考える新しい世界が出現し、その影響は甚大であると考えられる。
もちろん、偏微分方程式論でも同様であるが、多変数のゼロ除算の定義から既に多変数解析関数論における難解な問題に繋がっていて、殆ど未知の世界である。
ゼロ除算算法の微分方程式論における影響は広範で、甚大であると考えられる。学術書の全般的な書き換えが求められている。
以 上

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html



1/0=0、0/0=0、z/0=0



0 件のコメント:

コメントを投稿