2017年6月30日金曜日

藤井四段 授業でも“集中力”担任教師「数学的なセンスが優れている」

藤井四段 授業でも“集中力”担任教師「数学的なセンスが優れている」

将棋の連勝記録歴代1位の最年少プロ棋士で中学3年藤井聡太四段(14)が通う名古屋大教育学部付属中・高校の原順子副校長が29日、名古屋市内で記者会見し、学校での普段の様子を話した。記録達成後に登校すると、クラスメートが拍手で迎えたという。

 対局が重なる中、学業と将棋を両立する多忙な生活を送る。授業を受ける姿勢は真剣そのもので、集中すると体を乗り出し、将棋を指す時と同様のしぐさを見せることも。補習の必要はなく、数学を教えている担任教師は「数学的なセンスが優れている」と評価しているという。

 学校ではいつも穏やかで、よく友人と笑い合っている。宿題を提出せず教師に「なぜやらないといけないのか」と疑問を投げ掛けたが、「授業の一環として、教えた内容を定着させるために出している」と諭されると納得し、ちゃんと提出するようになったという。

 藤井四段は26日、デビュー以来負けなしの29連勝を達成した。東京での対局が夜まで続いたため翌日は欠席、28日に登校し教室に入ると、クラスメートが一斉に拍手して「おめでとう」と声を掛けた。
    [ 2017年

    興味深く読みました:

    再生核研究所声明 44 (2010/06/26): 
    梅の木学問と檜学問-日本の研究者育成についての危惧

    初めに、大谷杉郎 群馬大学名誉教授の 宮大工(…… その晩、「梅の木学問」という言葉に出会った。梅は成長は速いが大木にならない。そのように、進み方は早いが学問を大成させないで終わるのをいうのだそうである。その反対が、成長は遅いが大木になる「楠くすのき学問」だと書いてある。西岡棟梁の話を聞いた直後だったので、千年の先を見極め、千年以上も生きつづける学問を「檜学問」と呼んでも良さそうである。学校教育の目標はこれにして欲しい。: 夜明け前 よっちゃんの想い 158-160)を想い出し、日本の研究者育成の観点から、考察を行いたい。
    先ず第1に述べたいのは 研究者の育成や、教育の問題は、 在りよう、考え方、目標などいずれも多様性が大事であり、いろいろな考え方や見方を尊重する必要があるということである。 従って、ここでの議論も一つの視点と柔軟に考えて頂きたいということである。
    ( …… しかし、何よりも大事なことは、個々の意見ではなくて、このようにいろいろ考え、いろいろな意見をまとめ、多くの人の意見を交換していくことと思っています。 私は、そのきっかけを与えようとしているに過ぎません。──哲学は教えられない、ただ哲学することが教えられるだけだ──という言葉が想い出されます。私は、専門家や知識をもっている人だけが良識や見識を持っているとは考えず、善良な市民の感覚のなかにこそ、大きな真実と良識があると思っています。ですから、いろいろな広い人たちからのご意見や提案を期待しているのです。 2009 年7月23 日 )
    次に、上記 大谷教授の宮大工 の引用部分の 前の本文は、 宮大工の心意気と癖組などの考え方など 誠に心惹きつけるものがあるが、上記引用部分の考え方には 多少の疑念も湧くが、他方、心惹きつけるものもある。
    疑念とは、進み方は早いが学問を大成させないで終わる 生き方、学問も個性として、それはそれでいいのではないか、逆に 千年以上も生きつづける学問が良いとは限らないという価値観と視点である。― 梅も檜も それぞれに良い。
    それにも関わらず、現在の日本の研究者育成の観点から、この件について、危惧の念を抱かざるを得ない。 それは特に 共通テスト開始以後、特に顕著になっているのは いわゆる国立大学の法人化移行後の 悪しき風潮に対する危惧である。
    共通テスト開始以後 盛んになったのは、細切れの知識偏重と大学の画一化による点数による序列化、入試技術の専門化などである ― それ以前の入試の多様性と時間的な余裕を比較されたい。国立大学の法人化移行後は、財政状況の悪化と共に評価,評価の嵐と悪しき成果主義と膨大な雑用の増加である。
    その結果、これらに対応できる研究者とは、受験体制に調子良くのれ、大学院でも早く成果の出せる上記梅の木型の研究者となりかねない状況ではないかと危惧せざるを得ない。
    なるほど、優秀な研究者は どのような環境、体制でものり越えて、良い研究業績を上げることができる という見解には 誠一理あるが、しかしながら、多くの労力を費やし、雑念を入れ、結果として、能力を生かせない状況が広く存在していると考える。才能を活かせず、才能を殺してしまう状況が世に多くあると考える。また、それゆえに、いわば大器晩成型の多くの才能をうずもらせてしまうのではないかとおそれる。
    言いたいことは、学部あたりまでの教育には 時間的な余裕を与え、人生や世界、自然などに想いを致したり、あるいは友情を育てたり、自らを顧みることのできる余裕を用意することである。 そこで、人生の基礎をしっかりと身につけて欲しいと考える。- また、そのような余裕のうちから、イチロー選手や、谷亮子選手、荒川静香選手、坂本龍一氏のような 多彩な才能が芽吹くことが期待できるのではないだろうか。天才教育や少年留学なども大いに進めて頂きたい(声明9)。
    ここで、さらに気になるのは、かつて安保闘争や学園紛争に見られたような、若者の元気さが失われ、無気力、無感動、元気のない学生の増加である。世界についても、哲学についても、真理の追究などについても 聞くことは もはや稀である。 小手先の学力をつけることに追われて、精神面や健康面が失われているのではないかと危惧される。
    他方、大学院以上においては、成果、成果と急がずに 研究課題の選択や、基礎について深い、広い視点が持てるように、経済的にも時間的にも十分な待遇を用意すべきである。何事初めの段階における取り組みは、 将来に亘って、決定的に大事になると考える。
    初期段階において、目先の成果を求めれば 研究課題は成果が得られ易い、個別の研究課題となり、しっかりとした研究課題が確立できないのは当然ではないだろうか。 どんな課題でも 研究成果を出すのは容易ではないから、それらに集中しているうちに、その研究課題の枠外から出られないように陥り、研究課題が小さな世界に特化してしまうのは、多くの普通の研究者の悲しい在り様と言えるだろう。
    助教などの制度によって、助手の身分を 形だけ上げて、講義や雑用を課し、さらに任期制を導入したりして 処遇を悪化させているのは 大学人の反省すべき悪しき制度ではないだろうか。研究以外義務が無いような研究員として処遇するのは 若手研究者育成の要ではないかと考える。 実際、そのような時期に 研究の基礎が確立された研究者は 世に多いと考えられる。さらに、世界の指導的な研究者たちとの交流が 研究者の成長に大きく寄与した例は 非常に多いと考えられる。
    日本の研究者育成の観点から、現状の問題点を総合的に見直して、よりよい位置づけと対応を考えるのは 緊急の現代的な課題であると考える。現状の風潮では、いざ本格的な研究活動に入るころ、若き研究者達が立ち枯れ病にかかってしまう危険性は 極めて高いと危惧される。

    再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

    アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。
    そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
    先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
    反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
    いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。
    大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
    複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
    ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
    以 上
    追記:
    (2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory6, 51-58.

    再生核研究所声明316(2016.08.19) ゼロ除算における誤解

    (2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
                                                         
    6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
    まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
    先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
    一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
    ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
    また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
    次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
    ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
    具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
    ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。と述べ、大きな数学の改革を提案している:
    再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

    以 上

    再生核研究所声明335(2016.11.28)  ゼロ除算における状況
    ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
    アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
    1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
    2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
    3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
    4.       孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
    5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること;  \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
    6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
    7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
    8. 接線法線の考えに新しい知見。曲率についての定義のある変更。
    9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
    10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
    11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
    12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
    13.確定された数としての無限大、無限は排斥されるべきこと。
    14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
    15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
    16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
    17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
    18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。

    0 件のコメント:

    コメントを投稿