书摘:穿越平行宇宙
作者:迈克斯·泰格马克
2017-06-21 10:29:17
《穿越平行宇宙》 封面,图片来源:湛庐出版社 |
为什么我相信第四层多重宇宙
为什么是这些公式,而不是其他的呢?
假设你是一位物理学家,你发现了一种方法,能将所有物理定律统一到一个“万物理论”中。用这个万物理论的数学公式,你能回答一切让当代物理学家们辗转反侧的问题,比如量子引力究竟是如何运作的,以及怎样解决测度问题。印着这些公式的T 恤成了畅销货。你因此获得了诺贝尔奖。你欢欣鼓舞。然而,在颁奖典礼的前一夜,你却忐忑不安、夜不能寐,因为你内心纠结着一个有些难堪的问题,这个问题也正是我的英雄——约翰·惠勒提出的一个至今无人能回答的问题:为什么会是这些特定的公式,而不是其他公式呢?
在前两章里,我论证了数学宇宙假说。这个假说认为,我们的外部物理实在其实是一个数学结构。这再次凸显了惠勒的问题。数学家们已经发现了大量的数学结构,然而,尽管有些数学结构也许能描述某些有限的局部,但没有一个与我们的物理实在完全符合。1916 年,广义相对论成了最匹配的候选者,它不仅涵盖了时间和空间,还描述了物质的多种形式。但是,随着量子力学的兴起,人们很快会发现,我们的物理实在中有些特点是无法用广义相对论的数学结构来解释的。幸运的是,由于你发现了那个接近“万物理论”的方法,所以你现在可以扩展这张图,为其加上你所发现的那个数学结构。倘若你加上的方框正是人们寻觅已久的那个完全符合物理实在的方框,那你就真能实至名归地把诺贝尔奖抱回家了。
这时,我仿佛听到约翰·惠勒那慈祥的声音突然响起在耳边:“可是,其他方框呢?”如果你的方框很符合物理实在,那么为什么其他的不行呢?
所有方框所根植的数学基础都是平等的,只不过数学结构不同。那么,为什么在物理实在面前,其中一些比另一些更平等呢?在实在的最深处,是否真的存在一个根本性的、无法解释的不对称,将各种数学结构划分成两个阵营——拥有物理实在的数学结构和缺乏物理实在的数学结构?
数学民主主义,一种激进的柏拉图主义
早在1990 年那个在伯克利的夜晚,我脑中第一次冒出了“数学宇宙”的想法。在国际公寓五楼宿舍外的走廊上,我把这个想法告诉了我的好友比尔·波里尔。那晚,这个问题真的搅得我心神不宁。直到我脑袋里的灯泡熄灭,我意识到,有一条路可以把我带出这个哲学困境。我向比尔辩称,彻底的数学民主主义是说,数学存在和物理存在是等价的,因此所有存在于数学中的结构,也都存在于物理中这可以被看作一种激进的柏拉图主义:柏拉图“思想境界”中的所有数学结构都以物理形式存在于“洞穴之外”的某处。
换句话,这个观点就是说,在我们之前所讲到的三层平行宇宙之外,还有一些更加硕大无朋的第四层平行宇宙,各自对应着不同的数学结构。前三层平行宇宙相当于同一个数学结构中无法相互交流的平行宇宙:第一层平行宇宙,简单地说就是遥远的区域,光线没有足够的时间来赶上我们;第二层平行宇宙覆盖的区域,由于我们与它们之间的空间发生了宇宙学暴胀而永远遥不可及;第三层平行宇宙,也就是埃弗雷特所说的“多世界”,讨论的是量子力学的希尔伯特空间内无法交流的各部分。
然而,不管是第一、第二还是第三层平行宇宙,都遵循着相同的基本数学公式(描述了量子力学、暴胀等),第四层平行宇宙则像穿梭于不同调式中的翩翩舞者,涉入了不同的公式,对应着不同的数学结构。
我们的数学宇宙
假如第四层多重宇宙的理论是正确的,那么,由于它没有任何自由变量,所有平行宇宙的全部性质(包括那些自知的子结构所产生的主观感知)原则上都能由一个极其聪明的数学家推导出来。可是,这个理论正确吗?第四层多重宇宙真的存在吗?
有趣的是,在数学宇宙假说的语境中,第四层多重宇宙的存在是毋庸置疑的。我们在第10 章中已经详细讨论过,数学宇宙假说认为数学结构正是我们的外部物理实在,而不仅是它的描述。这种物理实在与数学实在之间的等价关系意味着,假如一个数学结构包含一个自知的子结构,它将会像身在真实的物理宇宙中一样,感知到自己的存在,就像你和我(尽管那个宇宙的各种特性和我们不一样)。霍金曾发出一个著名的疑问:“是什么赋予这些方程以生命,并制造出一个被它们所描述的宇宙?”在数学宇宙假说的语境中,不需要向方程“赋予”什么生命,因为重点并不是数学结构如何描述了宇宙,数学结构本身就是宇宙。此外,也不需要什么“制造”。你不能“制造”出一个数学结构——它单纯地存在着。它不存在于时间和空间中——更可能是反过来,空间和时间存在于它之中。
换句话说,所有存在于数学上的结构都有一个相同的存在状态。最有趣的问题不是它们中的哪些以物理形式存在着(它们都是),而是哪些蕴含着生命——或许,蕴含着我们。许多数学结构(比如正十二面体)缺乏足够的复杂性来支撑任何自知的子结构。因此,第四层多重宇宙很有可能像一片幅员广袤但了无人烟的沙漠,生命只被局限在极其罕见的绿洲中,局限在那些对生命友好的数学结构中,比如我们栖身的这个。与之类似,我们在第5 章也曾看到,大部分第二层多重宇宙也是贫瘠的荒漠,生命被局限在太空中小小的“宜居带”内,因为只有这里的暗能量密度等物理参数适宜生命的繁衍生息。第一层多重宇宙中也上演着同样的故事——生命仅繁盛于太空中很小的一部分,主要位于行星表面附近的区域。因此,我们人类栖身的地方,实在是非常特别!
《穿越平行宇宙》,作者迈克斯·泰格马克,MIT物理系终身教授,平行宇宙理论世界级研究权威,由浙江人民出版社出版。
(编辑:王旭泉)
とても興味深く見ました:
再生核研究所声明353(2017.2.2) ゼロ除算 記念日
2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは
再生核研究所声明 148(2014.2.12): 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
で、最新のは
Announcement 352 (2017.2.2): On the third birthday of the division by zero z/0=0
である。
アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。
1) ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2) 予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3) ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4) この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5) いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6) ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上
再生核研究所声明255 (2015.11.3) 神は、平均値として関数値を認識する
(2015.10.30.07:40
朝食後 散歩中突然考えが閃いて、懸案の問題が解決した:
どうして、ゼロ除算では、ローラン展開の正則部の値が 極の値になるのか?
そして、一般に関数値とは何か 想いを巡らしていた。
解決は、驚く程 自分の愚かさを示していると呆れる。 解は 神は、平均値として関数値を認識すると纏められる。実際、解析関数の場合、上記孤立特異点での関数値は、正則の時と全く同じく コ-シーの積分表示で表されている。 解析関数ではコ-シーの積分表示で定義すれば、それは平均値になっており、この意味で考えれば、解析関数は孤立特異点でも 関数値は 拡張されることになる ― 原稿には書いてあるが、認識していなかった。
連続関数などでも関数値の定義は そのまま成り立つ。平均値が定義されない場合には、いろいろな意味での平均値を考えれば良いとなる。解析関数の場合の微分値も同じように重み付き平均値の意味で、統一的に定義でき、拡張される。 いわゆるくりこみ理論で無限値(部)を避けて有限値を捉える操作は、この一般的な原理で捉えられるのではないだろうか。2015.10.30.08:25)
上記のようにメモを取ったのであるが、基本的な概念、関数値とは何かと問うたのである。関数値とは、関数の値のことで、数に数を対応させるとき、その対応を与えるのが関数でよく f 等で表され x 座標の点 x をy 座標の点 yに対応させるのが関数 y = f(x) で、放物線を表す2次関数 y=x^2, 直角双曲線を表す分数関数 y=1/x 等が典型的な例である。ここでは 関数の値 f(x) とは何かと問うたものである。結論を端的に表現するために、関数y=1/xの原点x=0における値を問題にしよう。 このグラフを思い出して、多くの人は困惑するだろう。なぜならば、x が正の方からゼロに近づけば 正の無限に発散し、xが負の方からゼロに近づけば負の無限大に発散するからである。最近発見されたゼロ除算、ゼロで割ることは、その関数値をゼロと解釈すれば良いという簡単なことを言っていて、ゼロ除算はそれを定義とすれば、ゼロ除算は 現代数学の中で未知の世界を拓くと述べてきた。しかし、これは誰でも直感するように、値ゼロは、 原点の周りの値の平均値であることを知り、この定義は自然なものであると 発見初期から認識されてきた。ところが、他方、極めて具体的な解析関数 W = e^{1/z} = 1 + 1/z + 1/2!z^2 + 1/3!z^3 +……. の点 z=0 における値がゼロ除算の結果1であるという結果に接して、人は驚嘆したものと考えられる。複素解析学では、無限位数の極、無限遠点の値を取ると考えられてきたからである。しかしながら、上記の考え、平均値で考えれば、値1をとることが 明確に分かる。実際、原点のコーシー積分表示をこの関数に適用すれば、値1が出てくることが簡単に分かる。そもそも、コーシー積分表示とは 関数の積分路上(簡単に点の周りの円周上での、 小さな円の取り方によらずに定まる)で平均値を取っていることに気づけば良い。
そこで、一般に関数値とは、考えている点の周りの平均値で定義するという原理を考える。
解析関数では 平均値が上手く定義できるから、孤立特異点で、逆に平均値で定義して、関数を拡張できる。しかし、解析的に延長されているとは言えないことに注意して置きたい。 連続関数などは 平均値が定義できるので、関数値の概念は 今までの関数値と同じ意味を有する。関数族では 平均値が上手く定義できない場合もあるが、そのような場合には、平均値のいろいろな考え方によって、関数値の意味が異なると考えよう。この先に、各論の問題が派生する。
以 上
Reality of the Division by Zero $z/0=0$
再生核研究所声明306(2016.06.21) 平行線公理、非ユークリッド幾何学、そしてゼロ除算
表題について、山間部を散歩している折り新鮮な感覚で、想いが湧いて来た。新しい幾何学の発見で、ボーヤイ・ヤーノシュが父に言われた 平行線の公理を証明できたら、地球の大きさ程のダイヤモンドほどの値打ちがあると言われて、敢然と証明に取り掛かった姿とその帰結である。また、ユークリッドが海岸を散歩しながら幾何学を建設していく情景が鮮やかに想い出された(Liwanovaの『新しい幾何学の発見』(のちに『ロバチェフスキーの世界』と改題)(東京図書刊行)。この件、既に声明に述べているので、まずは確認したい:
再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)
まず基本語をウイキペデアで確認して置こう:
https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9
アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。
https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%
非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。
ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。
ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。
この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。
ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。
何と ユークリッド空間で 平行線は ある意味で全て原点で交わっている という、現象が明らかにされた。
もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。
そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。
ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。
この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。
平行線の交わりを考えてみる。交わる異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。
一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。
ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。
以上
上記で、数学的に大事な観点は、ユークリッド自身そうであったが、平行線公理は真理で、証明されるべきもの、幾何学は絶対的な真理であると非ユークリッド幾何学の出現まで、考えられてきたということである。2000年を超える世界観であった事実である。そこで、平行線の公理を証明しようと多くの人が挑戦してきたが、非ユークリッド幾何学の出現まで不可能であった。実は、証明できない命題であったという全く意外な帰結であった。真に新しい、概念、世界観であった。証明できない命題の存在である。それこそ、世界観を変える、驚嘆すべき世界史上の事件であったと言える。
この事件に関してゼロ除算の発見は、全く異なる世界観を明らかにしている。ユークリッドそして、非ユークリッド幾何学の3人の発見者にとって、全く想像ができなかった、新しい事実である。平行線が 無限の先で交わっているとは ユークリッドは考えなかったと思われるが、近代では、無限の先で交わっていると考えられて来ている。― これには、アーベル、オイラー、リーマンなどの考えが存在する。このような考えは、ここ100年以上、世界の常識、定説になっている。ところがゼロ除算では、無限遠点は 数ではゼロが対応していて、平行線は代数的に原点で交わっている、すべての直線は代数的に原点を通っているという解釈が成り立つことを示している。
ユークリッドの幾何学の建設時の想い、ボーヤイ・ヤーノシュの激しい挑戦の様を、 想い を 深く、いろいろ想像している。
以 上
Matrices and Division by Zero z/0 = 0
表題について、山間部を散歩している折り新鮮な感覚で、想いが湧いて来た。新しい幾何学の発見で、ボーヤイ・ヤーノシュが父に言われた 平行線の公理を証明できたら、地球の大きさ程のダイヤモンドほどの値打ちがあると言われて、敢然と証明に取り掛かった姿とその帰結である。また、ユークリッドが海岸を散歩しながら幾何学を建設していく情景が鮮やかに想い出された(Liwanovaの『新しい幾何学の発見』(のちに『ロバチェフスキーの世界』と改題)(東京図書刊行)。この件、既に声明に述べているので、まずは確認したい:
再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)
まず基本語をウイキペデアで確認して置こう:
https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9
アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。
https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%
非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。
ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。
ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。
この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。
ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。
何と ユークリッド空間で 平行線は ある意味で全て原点で交わっている という、現象が明らかにされた。
もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。
そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。
ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。
この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。
平行線の交わりを考えてみる。交わる異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。
一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。
ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。
以上
上記で、数学的に大事な観点は、ユークリッド自身そうであったが、平行線公理は真理で、証明されるべきもの、幾何学は絶対的な真理であると非ユークリッド幾何学の出現まで、考えられてきたということである。2000年を超える世界観であった事実である。そこで、平行線の公理を証明しようと多くの人が挑戦してきたが、非ユークリッド幾何学の出現まで不可能であった。実は、証明できない命題であったという全く意外な帰結であった。真に新しい、概念、世界観であった。証明できない命題の存在である。それこそ、世界観を変える、驚嘆すべき世界史上の事件であったと言える。
この事件に関してゼロ除算の発見は、全く異なる世界観を明らかにしている。ユークリッドそして、非ユークリッド幾何学の3人の発見者にとって、全く想像ができなかった、新しい事実である。平行線が 無限の先で交わっているとは ユークリッドは考えなかったと思われるが、近代では、無限の先で交わっていると考えられて来ている。― これには、アーベル、オイラー、リーマンなどの考えが存在する。このような考えは、ここ100年以上、世界の常識、定説になっている。ところがゼロ除算では、無限遠点は 数ではゼロが対応していて、平行線は代数的に原点で交わっている、すべての直線は代数的に原点を通っているという解釈が成り立つことを示している。
ユークリッドの幾何学の建設時の想い、ボーヤイ・ヤーノシュの激しい挑戦の様を、 想い を 深く、いろいろ想像している。
以 上
Matrices and Division by Zero z/0 = 0
再生核研究所声明287(2016.02.12) 神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算
(最近 相当 ゼロ除算について幅広く歴史、状況について調べている。)
ゼロ除算とは ゼロで割ることを考えることである。ゼロがインドで628年に記録され、現代数学の四則演算ができていたが、そのとき、既にゼロで割ることか考えられていた。しかしながら、その後1300年を超えてずっと我々の研究成果以外解決には至っていないと言える。実に面白いのは、628年の時に、ゼロ除算は正解と判断される結果1/0=0が期待されていたということである。さらに、詳しく歴史を調べているC.B. Boyer氏の視点では、ゼロ除算を最初に考えたのはアリストテレスであると判断され、アリストテレスは ゼロ除算は不可能であると判断していたという。― 真空で比を考えること、ゼロで割ることはできない。アリストテレスの世界観は 2000年を超えて現代にも及び、我々の得たゼロ除算はアリストテレスの 世界は連続である に反しているので受け入れられないと 複数の数学者が言明されたり、情感でゼロ除算は受け入れられないという人は結構多い。
数学界では,オイラーが積極的に1/0 は無限であるという論文を書き、その誤りを論じた論文がある。アーベルも記号として、それを無限と表し、リーマンもその流れで無限遠点の概念を持ち、リーマン球面を考えている。これらの思想は現代でも踏襲され、超古典アルフォースの複素解析の本にもしっかりと受け継がれている。現代数学の世界の常識である。これらが畏れ多い天才たちの足跡である。こうなると、ゼロ除算は数学的に確定し、何びとと雖も疑うことのない、数学的真実であると考えるのは至極当然である。― ゼロ除算はそのような重い歴史で、数学界では見捨てられていた問題であると言える。
しかしながら、現在に至るも ゼロ除算は広い世界で話題になっている。 まず、顕著な研究者たちの議論を紹介したい:
論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。
またフランスでも、奇怪な抽象的な世界を建設している人たちがいるが、個人レベルでもいろいろ奇怪な議論をしている人があとを立たない。また、数学界の難問リーマン予想に関係しているという。
直接議論を行っているところであるが、ゼロ除算で大きな広い話題は 特殊相対性理論、一般相対性理論の関係である。実際、物理とゼロ除算の関係はアリストテレス以来、ニュートン、アインシュタインの中心的な課題で、それはアインシュタインの次の意味深長な言葉で表現される:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
数学では不可能である、あるいは無限遠点と確定していた数学、それでも話題が尽きなかったゼロ除算、それが予想外の偶然性から、思いがけない結果、ゼロ除算は一般化された除算,分数の意味で、何時でも唯一つに定まり、解は何時でもゼロであるという、美しい結果が発見された。いろいろ具体的な例を上げて、我々の世界に直接関係する数学で、結果は確定的であるとして、世界の公認を要請している:
再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める
Announcement 282: The Division by Zero $z/0=0$ on the Second Birthday
詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
以 上
何故ゼロ除算が不可能であったか理由
1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。
Matrices and Division by Zero z/0 = 0
0 件のコメント:
コメントを投稿