2017年6月27日火曜日

阿波罗登月中的功臣数学家阿仁斯道夫 作者:蒋迅

阿波罗登月中的功臣数学家阿仁斯道夫

作者:蒋迅
在2013年,一件轰动数学界特别是中国数学界的事件是,一位不太为人知的年届58岁的数学家张益唐证明了一个弱形式的孪生素数猜想:存在无穷多个之差小于7000万的素数对。张益唐的成果让很多追求这个终极目标的数学家们又重新燃起了希望,此后,数学家们迅速将7000万降到了246。
张益唐的生活从此改变:学校从合同工讲师把他立马提升到正教授,各种奖励接踵而来,各大名校纷纷邀请他加盟,中国数学界对其盛情邀请。常人们则把话题的焦点集中在了张益唐这样做是否值得的问题上:万一他一辈子都做不出这样的结果来,那他一辈子可能就是一个大学合同工讲师。在我们回答这个问题之前,先请读者来看另一个人的故事。这个人也试图攻下孪生素数猜想,曾经以为自己成功了,但终究以失败而告终。如果他地下有知张益唐的消息的话,他会做何感想呢?他就是美国范德堡大学大数学家理查德·阿仁斯道夫(Richard Arenstorf)教授。

图1. 阿仁斯道夫(1966年)
阿仁斯道夫1929年11月7日在德国汉堡出生。他的德文名字是Richard Franz Joseph Shultz-Arenstorff。对于他,我们知道的很少。可能因为他是一个德国人,英文的资料很少,但维基百科上居然没有他的德文条目,让我有些惊讶。经过一番费力的搜索和查询,我只能得到如下的信息:阿仁斯道夫的父亲在他幼年的时候就独自离开了德国,母亲则因反对法西斯而死在了纳粹的监狱里。他由养父母抚养成人。高中毕业后,他进入了汉堡大学数学系学习,后转学哥廷根大学。在汉堡读书期间,他认识了同系的雷娜特·曼泽克(Renate Manseck  )。他们经过三年的拉锯式恋爱,终于走进了婚姻的殿堂。阿仁斯道夫于1952年和1954年分别获得哥廷根大学数学学士和硕士学位,1956年在美茵茨大学,汉斯·罗巴赫(Hans Rohrbach)教授的指导下获得博士学位。他的论文题目是“实二次数域剩余类上的素数的二维分布”(德文,Uber die zweidimensionale Verteilung der Primzahlen reell-quadratischer Zahlkorper in Restklassen)。这属于解析数论的范畴。因为他大量使用了复变函数的方法,所以掌握了娴熟的复分析技巧。在这一点上,他的工作很类似于用黎曼ζ函数于数论的思路。我们推荐读者阅读卢昌海的精彩科普文章“黎曼猜想漫谈”。

图2. 美茵茨大学
阿仁斯道夫的导师罗巴赫不算是一个大数学家。罗巴赫1932年从柏林大学获得博士学位,主要研究领域是堆垒数论。二战期间他参加了纳粹党,甚至冲锋队,但又不被信任,因为他与一些犹太裔的同事保持良好关系。由于他的专业是数论,他被调到纳粹解码部门,曾经成功解开了美国驻柏林使馆的通讯。这一点上,他与图灵做的很相似,但他的名气则完全不能和图灵相比。二战结束后,他改信基督教,在这方面花了大量时间。不知阿仁斯道夫怎么会到美茵茨大学去找这样一位导师。几乎可以肯定的是,他已经意识到了这位导师不是太在行,所以有意把哥廷根大学的著名数论专家卡尔·西格尔(Carl Ludwig Siegel,1896-1981)请进自己的博士学位委员会里。一种可能就是他本来是想跟西格尔的,但是西格尔在1956年之后不再收学生(他的最后一个博士生毕业于1957年)。尽管没能成为西格尔指导的学生,西格尔对阿仁斯道夫的影响还是很大的。我们在阿仁斯道夫的博士论文中可以看到许多西格尔的思想。而另一个重要的影响是西格尔在天体力学方面的工作,特别是三体问题。这应该是阿仁斯道夫后来搞起了弹道导弹和卫星轨道问题的重要原因。
获得博士学位后,阿仁斯道夫回到了哥廷根。正好这时,美国到德国搜罗人才,一个三人小组找到了他。1957年,在得到了丰厚的房车许愿之后,阿仁斯道夫接受了陆军弹道导弹局(Army Ballistic Missile Agency,ABMA)的非军事编制的科学家任命,他带领妻子和一个刚刚出生的儿子移民美国。1960年在归化为美国公民时把全家的姓简化成了Arenstorf,显然是为了纪念他的英雄母亲。这个陆军弹道导弹局是个什么单位呢?ABMA成立于1956年2月。它的技术主任就是大名鼎鼎的德国V1和V2火箭的总设计师沃·冯·布劳恩(Wernher von Braun,1912-1977)。“PGM-11红石(Redstone)”是ABMA的第一个重要项目,基本上是V2火箭的继续。美国海军研究实验室搞的第一个发射卫星的“先驱计划”失败后,布劳恩搞的中程弹道导弹IRBM“丘比特-C型火箭”正好适用于发射美国第一颗人造卫星的“朱诺一号运载火箭”的设计要求。1956年9月,美国使用“丘比特-C型火箭”成功发射了一个卫星模型。人们普遍认为,如果当时美国政府允许搭载真的卫星的话,那世界上第一颗人造卫星就不是苏联人发射的“斯普特尼克1号”卫星了。1958年1月,“丘比特-C型火箭”将美国第一颗人造卫星“探险者1号”送入地球轨道。阿仁斯道夫就是在这样一个大环境中加入了布劳恩的团队的。1960年,ABMA被合并到NASA,阿仁斯道夫也随着变成了NASA的一名科学家,仍然在布劳恩的手下工作。

图3. 阿仁斯道夫转为NASA科学家时的照片
阿仁斯道夫的专业方向是数论。听起来跟天体力学完全没有关系。即使他拿到博士后立即转行,也很难想像他能被布劳恩选中研究天体轨道问题。这里的关键是他使用的研究工具复分析。前面说过,他的博士论文结果是用的复分析。现在我们再来看看他是怎样把复分析用到天体力学里,具体地说就是怎样用到三体问题中的。

图4. 三体问题图释
三体问题是天体力学中的基本力学模型。它是指三个质量、初始位置和初始速度都是任意的可视为质点的天体,在相互之间万有引力的作用下的运动规律问题。这是一个有三百多年历史的古老问题。历史上,包括欧拉、拉格朗日和庞加莱在内的著名数学家都研究过。如果把这些运动方秤诩罗列出来一共有9个方程。现在已经知道,三体问题不能精确求解,即无法预测所有三体问题的数学情景,只有几种特殊情况已有研究结果。但即使是用数值解法,也不能得到稳定的解,因为初始值的一点波动都会导致解完全不同。庞加莱率先考虑了一个特殊的情况:在三个天体中有一个的质量与其他两个相比如此之小到了可以忽略其对另两个大天体运动的影响。这样,两个大的天体就可以看作是一个二体问题。而二体问题早在牛顿时代就已经圆满解决了。也就是说,它们可以按照开普勒定律绕着它们的质量中心作稳定的椭圆运动。然后把小天体加入到这个二体系统中,看这二体对小天体的影响。这样的三体问题称作是限制性三体问题。其方程从9个减少到3个。

图5. 地球和月球在一个平面上
NASA要研究的正是一个限制性三体问题,因为NASA关注的是在1960年代末的登月问题。而前人还没有找到一条让人造卫星飞向月球的路线。所以阿仁斯道夫所面对的三体就是:地球(E)、月球(M)和人造卫星(P)。显然,地球的质量远远大于月球的质量。而人造卫星的质量对地球和月球运动的影响可以忽略不计。这三体都被看作是点质量,并且是在同一个平面上。于是这个平面就可以被看作是一个复平面。假定这个三体系统的总重量为1,月球的质量为μ ( 0 < μ << 1),则地球的质量为1 ─ μ。取地球和月球的重心为坐标系的原点,则人造卫星的轨迹满足一个复常微方程
其中复数x(t) = x1(t) + ix2(t) 是人造卫星的位置向量。也就是说,阿仁斯道夫把问题简化到了一个方程和一个复自变量的问题。当μ= 0时,这个方程的解描述的是经典开普勒运动:x(t) = e-itz(t),这里复函数z(t) 是方程z’’(t) = -z(t)|z(t)|-3的一个特解。在一定条件下,这个解是一个周期解,即沿着一条椭圆轨道做周期运动。当μ在零点附近做小的扰动时,出现两种情况:一个是庞加莱发现的圆周运动,另一个就是阿仁斯道夫得到的解。假定椭圆轨道的半长轴为a,离心率为 ε,在t = 0时,z(t) = a(1 + ε),z(t) = ic*/ z(0),其中常数c*满足c*2 = a(1 ─ ε2)。它的轨道周期为T0 = 2π|a3/2|。这时,相应的x(t)成为周期函数的充分必要条件是T0与2π共度,也就是说存在两个互素的整数m和k使得a3/2 =  m/k。阿仁斯道夫的解就是围绕不同的m和k得到的。所以,他得到的是一组解。
在阿仁斯道夫的结果基础上,他们团队用当时最先进的计算机对这些解进行了数值计算。下面两个图是其中两个例子。

图6. m = 1, k = 2, μ = 1/82

图7. m = 2, k = 5, μ = 1/82
在这族曲线中有一个八字形的曲线(不在本文中),其两个瓣分别包含地球和月球。这就是NASA选用的阿波罗飞船飞向月球的轨道的基础。理论上讲,沿着这条轨道,飞船可以在不开动发动机的条件下在这条轨道上永远飞行。而且阿仁斯道夫通过计算得到了一条特别低的轨道。所以NASA需要做的就是,用“土星5号”大推力火箭把飞船送入地球轨道,然后进入这条地月之间的轨道飞向月球。在到达月球上空时再脱离这条地月轨道进入月球轨道。如果出现意外,飞船可以不插入月球轨道而直接在这条地月轨道上返回。“阿波罗”8号、10号和11号都做好了失败的第二手准备,不过都没有用上。在“阿波罗”13号发生氧气罐爆炸事件后,NASA就是用的阿仁斯道夫设计的紧急返回轨道。阿仁斯道夫还设想把这条轨道作为“太空公交车”(space bus)的路线。后来这条轨道被人们称为“阿仁斯道夫轨道”。NASA在1966年授予他“特别成就奖”(Exceptional Achievement Medal)。《尼古拉极牯舅□缲握云渗翘Ⅹゥn(A Panorama of Pure Mathematics as Seen by Nicolas Bourbaki)一书中两次引用了他的结果。从此他的名字永远地留在了载人航天的史话中。

图8. 1969年“阿波罗”11号飞船的轨道

图9. 1968年,NASA授予阿仁斯道夫“特别成就奖”
阿仁斯道夫继续在三体问题上继续研究。1968年,他证明了,在旋转坐标系下,将二体中的一个天体分为一对密近双星,总质量和质心不变,通过延拓双星间的距离证明了两个密近双星围绕其质心作椭圆型周期运动情形的存在。

图10. 在范德堡大学当教授时的阿仁斯道夫
在阿姆斯特朗和奥尔德林程“阿波罗”11号飞船于1969年在月球上成功登陆之后,阿仁斯道夫知道已经完成了自己的任务。现在该是他继续追求自己的数学研究的时候了。带着自己在NASA取得的成果,他果断辞职,加盟范德堡大学,转身成了大学教授。在范德堡大学,他除了继续三体问题的研究外,他还重新捡起了自己的老本行:解析数论。在三体问题方面,在1977年,他和学生罗伯特楫i兹曼(Robert Bozeman)一起证明了对限制型 N + 1问题,N个大天体构成N体共线中心构形并围绕其质心作圆运动,围绕其中任一个大天体的椭圆轨道的存在,小参数是无摄开普勒轨道周期与大天体运动周期比的三分之一次方。1978年,阿仁斯道夫在自己1968年的结果和他与波兹曼的结果基础上,证明将N 体共线中心构形中任一个大天体分为小质量比的一对密近双星,该系统仍有周期解存在。在数论方面,他似乎没有太大的成绩。比较有代表性的有他在1957年发表的博士论文(发表在著名的“数学与应用数学杂志”上)和两篇他到范德堡大学之后的论文:“Theta 函数的部分分式展开”(1972,报告71-7,NRL报告7341.海军研究实验室)和“用模形式研究三维球体上整点的均匀分布”(1979,数论杂志)。从引用率看影嫌诩低。他大概一直像张益唐一样,在潜心研究孪生素数猜想。因为有人问他在取得博士学位后为什么长期不发(数学)论文,他确实解释过,他不想发没有意义的文章。不过他的境况比张好多了。有了在NASA取得的成就,他可以安稳地坐在范德堡大学教授的椅子上研究天体力学和数学,还在这两个领域里带出了数名博士。他能传承西格尔的风格,在天体力学和解析数论这两个领域保持研究,这样的人在当今已不多见。
2004年5月26日,阿仁斯道夫在arXiv.org上发表了一篇38页长的论文“有无穷多孪生素数”(There Are Infinitely Many Prime Twins)。这个消息当时曾经引起轰动,但一周后他就突然宣布他的证 明存在一个致命的错误,并将他的论文撤下来。在他这次尝试失败之后,有一名过去的学生回忆这位复分析课的老师说:他的作业记分系统有四种分数:R(“正确”),R/2(“半正确”),O(“零”),F(“失败”)。也就是说,零分不算是最差的。每周作业有三至四题,都要花费整个一周的时间去完成;期末考试有10道题。这名学生很高兴自己得了一个“B+”。看来这位教授很不容易对付。但学生最后说:“被阿仁斯道夫过高的估计是我的荣誉。”“我其实欣赏作为一个数学家和一个人的他。我很遗憾他的孪生素数的证明没有成功。”另一位听过他的课的学者认为,他的证明是“只差一点点”(near miss),因为他的证明虽然没有证明出孪生素数猜想,仍然是对数学的一个贡献;从长远意义上说,一个只差一点点的大的猜想的证明比一个不重要的定理的成功证明可能更有意义。
在突击孪生素数猜想失败后,阿仁斯道夫非常失落。虽然这时他已经是荣休教授,但他还在系里做一些事情。他决定完全退下来,回家与妻子安度晚年。他们夫妻在德国最困难的时候结婚,二人自始至终相爱如初。他们共同养育了三个儿子:大儿子Gerhard 在德国出生,曾经代表美国参加过国际奥数比赛并获得银牌(1974),但就在这一年,他在一次意外事件中在自家后院从树上摔下来,伤重而死,死时才18岁。二儿子Norbert本来是一位很有希望的计算机科学家,但不幸得了淋巴癌而英年早逝,年仅34岁(1996)。目睹了两位哥哥的死亡后,三儿子Hartwig精神上受到了刺激,本来就内向的他更加深居简出。后来他竟然辞去了基因工程研究员的工作,断绝了与家庭的来往,独自搬到加州沙漠地带。这对阿仁斯道夫夫妇,特别是对作为母亲的雷娜特造成了巨大的精神打击。2011年,雷娜特被发现得了乳腺癌。在与癌症搏斗两年后,她先他而去。2014年9月18日,阿仁斯道夫心脏衰竭,在自家去世。一位经受了多重打击的老人就这样静悄悄地离开了我们,但是他为人类首次登月做出的贡献值得每一个人骄傲,他走过的一生道路给了我们另一个思考。
鸣谢:衷心感谢Wolfgang Harms先生和Deb Stone女士的帮助,特别感谢Harms先生提供的照片。
这是笔者【NASA人的故事】系列中的一篇。请到这里继续阅读

とても興味深く読みました:

再生核研究所声明3712017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

ゼロ除算については、既に相当な世界を拓いていると考えるが、世の理解を求めている状況下で、理解と評価、反響にも関心がある:

ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響があり、さらに哲学、宗教、文化への大きな影響がある。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、数学者ばかりではなく、人類の名誉にも関わることである。実際、ゼロ除算の歴史は 止むことのない闘争の歴史とともに人類の恥ずべき人類の愚かさの象徴となるだろう。世間ではゼロ除算について不適切な情報が溢れていて 今尚奇怪で抽象的な議論によって混乱していると言える。― 美しい世界が拓けているのに、誰がそれを閉ざそうと、隠したいと、無視したいと考えられるだろうか。我々は間違いを含む、不適切な数学を教えていると言える: ― 再生核研究所声明 41: 世界史、大義、評価、神、最後の審判 ―。
地動説のように真実は、実体は既に明らかである。 ― 研究と研究成果の活用の推進を 大きな夢を懐きながら 要請したい。 研究課題は基礎的で関与する分野は広い、いろいろな方の研究・教育活動への参加を求めたい。素人でも数学の研究に参加できる新しい初歩的な数学を沢山含んでいる。ゼロ除算は発展中の世界史上の事件、問題であると言える (再生核研究所声明325(2016.10.14) ゼロ除算の状況について ー 研究・教育活動への参加を求めて)

そのような折り、ISAAC マカオ国際会議では、招待、全体講演を行い、ゼロ除算について、触れ、 論文も発表したものの(Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications -Plenary Lectures: Isaac 2015, Macau, China.  (Springer Proceedings in Mathematics and Statistics, Vol. 177) Sep. 2016  305pp.(Springer)  
今回頭記の200名を超える大きな国際会議で、ゼロ除算と微分方程式について真正面からゼロ除算の成果を発表することができた。
ゼロ除算には、世界史と世界観がかかっているとの認識で、この国際会議を記念すべきものとするようにとの密かな望みを抱いて出席した。そこで、簡単に印象など記録として纏めて置きたい。
まずは、3日目 正規の晩餐会が開かれる恵まれた日に 最初に全体講演を行った。主催者の学生が多数出席されたり、軍の専属カメラマンが講演模様を沢山写真に収めていた。図版を用意し、大事な点はOHPで講演中図示していた。用意した原稿は良く見えるように配慮したので、全貌の理解は得られたものと考えられる。 結びには次のように述べ、示した。宣言文の性格を持たせるとの意思表示である:
{\bf The division by zero is uniquely and reasonably determined as $$1/0=0/0=z/0=0$$ in the natural extensions of fractions. \\
We have to change our basic ideas for our space and world.\\
We have to change our textbooks and scientific books on the division by zero.\\
Thank you for your attention.}

講演に対して、アラブ首長国の教授が、現代数学を破壊するので、全て認められないとの発言があった。後で、送迎中のバスの中で、とんちんかんな誤解をしている教授がいることが分かった。過去にも経験済みであるが、相当に二人共 感情的に見えた ― それはとんでもないという感じである。閉会式に参加者を代表して謝辞を述べられたギリシャの教授が、画期的な発見で、今回の国際会議の最大の話題であったと述べられたが、要点について話したところ、要点の全てについて深い理解をしていることが確認された。さらにゼロ除算の著書出版の具体的な計画を進めたいという、時宜を得た計画が相談の上、出来た。
そこで、講演原稿と図版を出席者たちにメールし、助言と意見を広く求めている。理解できないと述べられた人にも 要求に応じて送っているが、現在までのところ連絡、返答がない。
主催者から、50カ国以上から200名以上の出席者があったと述べられたが、そのような国際会議で、招待、全体講演を行うことができたのは 凄く記念すべきこととして、出版される会議録、論文集の出版に最善をつくし、交流ができた人々との交流を積極的に進めていきたい。尚、正規の日本人参加者は8名であった。
ゼロの発見国インドからは6名参加していたので、1300年も前に0/0=0が四則演算の創始者によって主張されていた事実を重要視してその状況を説明し、特に対話を深め、創始者に関する情報の収集についての協力をお願いした。ゼロ除算について理解した、分かったと繰り返し述べていたが、どうも感情が伴わず、心もとない感じであった。若いカナダの女性に印象を伺ったところ、沢山の具体例を挙げられたので、認めざるを得ない、内容や意義より驚きの感じで、それが講演に対する全体的な反響の状況を表していると考えられる。
歴史は未来によって作られる。今回の国際会議の意義は 今後の研究の進展で左右されるものと考える。しかしながら十分な記録は既に残されていると考えている。

以 上
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 


1/0=0、0/0=0、z/0=0


再生核研究所声明3652017.5.12目も眩むほど素晴らしい研究課題 ― ゼロ除算

(2017.5.11.4:45 頃 目を覚ましたら、突然表題とその構想が情念として湧いてきたので、そのまま 書き留めて置きたい。)
そもそもゼロ除算とは、ゼロで割る問題であるが、ゼロの発見者、算術の確立者が既に 当時、0/0=0としていたにも関わらず(Brahmagupta (598 - 668 ?). defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628))、1300年以上もそれは間違いであるとして、現在に至っている。最近の知見によれば、それは 実は当たり前で、現代数学の初歩的な部分における大きな欠落で、現代数学の初歩部分は相当な修正、補充が要求されている。問題は、無限の彼方に対する概念が 無限と考えられていたのが 実はゼロであったとなり、ユークリッド幾何学の欠落部分が存在し、強力な不連続性が現れて、アリストテレスの世界観に反する世界が現れてきたことである。超古典的結果の修正、補完、新しい世界の出現である。
初等数学は 無限の概念や勾配が関係する部分で大きな変更が必要であり、2次曲線論ですら 修正が要求される。多くの物理学や数理科学に現れる公式において 分母がゼロのところで、新しい知見を探す、考えることができる。

ところで、数学とは何だろうかと問い、その中で、良い結果とは、

基本的であること、
美しいこと、
世の中に良い影響を与えること、


上記の観点で、想い出されるのは、ピタゴラスの定理、アインシュタインの公式、ニュートンの万有引力の公式や運動の法則、少し、高級であるが 神秘律 オイラーの公式 などである。
この観点で ゼロ除算の公式

1/0=0/0=z/0=0

を掲げれば、その初歩的な意味とともに 神秘的に深い意味 を知って、慄然とするのではないだろうか。それゆえにゼロ除算の研究は 世界史的な事件であり、世界観に大きな影響を与える。ゼロ除算は初等部分から 神秘律に至る雄大な研究分野であると言える。

探そうゼロ除算、究めようゼロ除算の意義。神の意思を追求しよう。

ゼロ除算は、中学生からはおろか、小学生にも分かって 楽しめる数学である。実際、道脇愛羽さん(当時6歳)は、ゼロ除算の発見後3週間くらいで、ゼロ除算は当たり前と理由を付けて、述べていた。他方、多くの大学教授は 1年を遥かに越えても、理解できず、誤解を繰り返している面白い数学である。世界の教科書、学術書は大きく変更されると考えられる。多くの人に理解され、影響を与える研究課題は、世に稀であると言える。

以 上

再生核研究所声明3662017.5.16微分方程式論の不備 ― 不完全性

(2017.5.14.9 時頃 山間部を散歩している時に 自然に構想が湧いた。)
数学の論理の厳格さ、厳密性は ジョルダンの閉曲線定理 が有名であるが、デデキンドの連続性公理、ワイエルシュトラスの最大値、最小値の存在定理、中間値の定理なども有名である。数学専攻学生の初期における ゼミナールの指導精神は、厳格な論理的思考の訓練にあると考えられる。この態度は 数学者の精神の基礎で、世情でも数学者との論争は手ごわいと見られているのではないだろうか。論理に隙や飛躍がないからである。逆に見ると、数学者が確立した理論は 恰も不滅の、不変の真理のように思われている、考えられているのではないだろうか。
この観点で、日本の著名な代表著書 高木貞治氏の解析概論は、模範的な数学書で、完璧な記述でまるで芸術作品のようである。
年々数学の著書が数多く出版されているが、著者たちは まずは、間違いのない記述に気を遣ってきていると考えられる。
ここ2年くらい、ゼロ除算の発見で、主に初等数学、学部レベルの教科書を相当参照してきている。実際、ゼロ除算が 数学にどのような影響を与えるかの基礎を見るには、基礎的な数学への関係を見れば、基本的な状況が捉えられると考えたからである。 
ゼロ除算の影響は、初等幾何学、解析幾何学、線形代数学、微積分学、微分方程式、複素解析学、力学など広範囲に及び、初等数学全般に及ぶことが明らかにされてきた。
ところが、数学の多くの著書のうちでも、微分方程式論では、現在の版でも相当に隙や論理の飛躍、扱いの不統一さなど、数学書としては 他の分野の著書に比べて ちぐはぐ、隙だらけに見えて来た。微分方程式論は不完全な状況であると言える。このことを簡潔に、具対的に指摘したい。未知の相当な世界にも触れたい。
先ず、微分方程式の定義である。普通は導関数を含む方程式を微分方程式と称する。このとき導関数とは何だろうか。関数に微分係数を対応させて、微分によって導かられた関数が導関数であるから、微分方程式には関数が定義されていなくてはならない。普通は1変数関数ならばxの関数 y=f(x) などと考え、その導関数を含む方程式を考えるだろう。例として考えられるのは、原点を中心とする半径aの円群が満たす例として多くの教科書の初期に 微分方程式の例が挙げられる。このとき、円はy軸に平行な接線を持つから その点で微分係数は存在しないと考えられるから、ただでは円群の満たす微分方程式とは言えず、微分方程式を満たさない点が存在することになってしまう。数学としては初めから、格好が悪いと言える。多くの微分方程式でこのことは広く問題になる。― ここの説明を上手くするために 都合の悪いところで、独立変数と従属変数を変えて、そこで考えれば良いという意見を頂いたが、少し人為的、最初の議論としてはあまり良いとは言えないのではないだろうか。
ところがゼロ除算で考えると、何とy軸に平行な接線の接点で、関数は微分可能で、微分係数の値、勾配はゼロであることが ゼロ除算の拓いた重要な知見、結果である。すると、微分方程式 dy/dx= - x/y は至るところで、円によって満たされるとなる。念のため、(a,0) で (dy/dx)(a)= - a/0=0 である。
この初歩的な結果は、微分方程式論に大きな影響を与える。解析関数の孤立特異点で、自然な意味で、値と微分係数を定義できるから、微分方程式を孤立特異点そのものでも考えることができるという、広い世界が拓かれてくる。微分方程式論を孤立特異点まで含めて議論する広い世界である。そもそも従来は、孤立特異点の孤立点を除いた近傍で数学を議論してきた。孤立特異点そのところでは数学を考えて来なかったのである。
ゼロ除算が拓いたゼロ除算算法は 解析関数の孤立特異点で有限確定値を与え、それらが自然な意味を持つから、微分方程式と微分方程式の解の孤立特異点での値の性質を調べる雄大な分野が存在する。
要するに、数理科学の数式で、分母がゼロになる膨大な数式で、ゼロ除算算法で孤立特異点で考える新しい世界が出現し、その影響は甚大であると考えられる。
もちろん、偏微分方程式論でも同様であるが、多変数のゼロ除算の定義から既に多変数解析関数論における難解な問題に繋がっていて、殆ど未知の世界である。
ゼロ除算算法の微分方程式論における影響は広範で、甚大であると考えられる。学術書の全般的な書き換えが求められている。
以 上


再生核研究所声明3682017.5.19)ゼロ除算の意義、本質

ゼロ除算の本質、意義について、既に述べているが、参照すると良くまとめられているので、初めに復習して、新しい視点を入れたい。

再生核研究所声明3592017.3.20) ゼロ除算とは何か ― 本質、意義

ゼロ除算の理解を進めるために ゼロ除算とは何か の題名で、簡潔に表現して置きたい。 構想と情念、想いが湧いてきたためである。
基本的な関数y=1/x を考える。 これは直角双曲線関数で、原点以外は勿論、値、関数が定義されている。問題はこの関数が、x=0  で どうなっているかである。結論は、この関数の原点での値を ゼロと定義する ということである。 定義するのである。定義であるから勝手であり、従来の定義や理論に反しない限り、定義は勝手であると言える。原点での値を明確に定義した理論はないから、この定義は良いと考えられる。それを、y=1/0=0 と記述する。ゼロ除算は不可能であるという、数学の永い定説に従って、1/0 の表記は学術書、教科書にもないから、1/0=0 の記法は 形式不変の原理、原則 にも反しないと言える。― 多くの数学者は注意深いから、1/0=\infty の表記を避けてきたが、想像上では x が 0 に近づいたとき、限りなく 絶対値が大きくなるので、複素解析学では、表現1/0=\infty は避けても、1/0=\infty と考えている事は多い。(無限大の記号がない時代、アーベルなどもそのような記号を用いていて、オイラーは1/0=\inftyと述べ、それは間違いであると指摘されてきた。 しかしながら、無限大とは何か、数かとの疑問は 続いている。)。ここが大事な論点である。近づいていった極限値がそこでの値であろうと考えるのは、極めて自然な発想であるが、現代では、不連続性の概念 が十分確立されていて、極限値がそこでの値と違う例は、既にありふれている。― アリストテレスは 連続性の世界観をもち、特にアリストテレスの影響を深く受けている欧米の方は、この強力な不連続性を中々受け入れられないようである。無限にいくと考えられてきたのが突然、ゼロになるという定義になるからである。 しかしながら、関数y=1/xのグラフを書いて見れば、原点は双曲線のグラフの中心の点であり、美しい点で、この定義は魅力的に見えてくるだろう。
定義したことには、それに至るいろいろな考察、経過、動機、理由がある。― 分数、割り算の意味、意義、一意性問題、代数的な意味づけなどであるが、それらは既に数学的に確立しているので、ここでは触れない。
すると、定義したからには、それがどのような意味が存在して、世の中に、数学にどのような影響があるかが、問題になる。これについて、現在、初等数学の学部レベルの数学をゼロ除算の定義に従って、眺めると、ゼロ除算、すなわち、 分母がゼロになる場合が表現上現れる広範な場合に 新しい現象が発見され、ゼロ除算が関係する広範な場合に大きな影響が出て、数学は美しく統一的に補充,完全化されることが分かった。それらは現在、380件以上のメモにまとめられている。しかしながら、世界観の変更は特に重要であると考えられる:

複素解析学で無限遠点は その意味で1/0=0で、複素数0で表されること、アリストテレスの連続性の概念に反し、ユークリッド空間とも異なる新しい空間が 現れている。直線のコンパクト化の理想点は原点で、全ての直線が原点を含むと、超古典的な結果に反する。更に、ゼロと無限の関係が明らかにされてきた。
ゼロ除算は、現代数学の初等部分の相当な変革を要求していると考えられる。
以 上

ゼロ除算の代数的な意義は、山田体の概念で体にゼロ除算を含む構造の入れ方、一般に体にゼロ除算の概念が入れられるが、代数的な発展については 専門外で、触れられない。ただ、計算機科学でゼロ除算と代数的な構造について相当議論している研究者がいる。
ゼロ除算の解析学的な意義は、従来孤立特異点での研究とは、孤立点での近傍での研究であり、正確に述べれば 孤立特異点そのものでの研究はなされていないと考えられる。
なぜならば、特異点では、ゼロ分のとなり、分子がゼロの場合には ロピタルの定理や微分法の概念で 極限値で考えてきたが、ゼロ除算は、一般に分子がゼロでない場合にも意味を与え、極限値でなくて、特異点で 何時でも有限確定値を指定できる ― ゼロ除算算法初めて、特異点そのものの世界に立ち入ったと言える。従来は孤立特異点を除いた世界で 数学を考えてきたと言える。その意味でゼロ除算は 全く新しい数学、世界であると言える。典型的な結果は tan(\pi/2) =0で、y軸の勾配がゼロであることである。
ゼロ除算の幾何学的な意義は、ユークリッド空間のアレクサンドロフの1点コンパクト化に、アリストテレスの連続性の概念でない、強力な不連続性が現れたことで、全く新しい空間の構造が現れ、幾何学の無限遠点に関係する部分に全く新規な世界が現れたことである。所謂無限遠点が数値ゼロで、表現される。
さらに、およそ無限量と考えられたものが、実は、数値ゼロで表現されるという新しい現象が発見された。tan(\pi/2) =0の意味を幾何学的に考えると、そのことを表している。これはいろいろな恒等式に新しい要素を、性質を顕にしている。ゼロが、不可能性を表現したり、基準を表すなど、ゼロの意義についても新しい概念が現れている。

以 上

0 件のコメント:

コメントを投稿