2017年6月7日水曜日

一些聪明有趣的金融业人士说,这些书会让你开卷有益 |专栏

一些聪明有趣的金融业人士说,这些书会让你开卷有益 |专栏

2017-06-04 12:31
  
本文系商业周刊App付费文章,禁止转载。
撰文:Barry Ritholtz
罗斯对全球产业的未来提出了非常有常识性的看法
“我都不太想透露这本书,因为我正在刷第二遍,还会三刷四刷”
夏天来了,带来了一年中最美好的时光,你可以躺在户外毯子上或沙滩上,美美地看书。但如此有限的自由时间,究竟应该“浪费”在哪本书上呢?
我的做法是,向聪明人取经,问问他们过去一年最喜欢哪本书,今年夏天最想看哪本书。以下是他们的回答,略做编辑整理:
艾伦·克鲁格(Alan Krueger)是白宫经济顾问委员会前主席,目前在普林斯顿大学当经济学教授。过去一年他最喜欢读的是住在新泽西州的布鲁斯·斯普林斯廷(Bruce Springsteen)写的《为跑而生》(Born to Run)。克鲁格说:“他首先是个作家,这本自传写得很有诚意,读者可以感受到塑造他人生和音乐的热情、能量、恐惧和人性。”
白宫经济顾问委员会前主席艾伦·克鲁格
《为跑而生》(Born to Run)
克鲁格今夏希望读的书是《莱昂哈德·欧拉:启蒙运动的数学天才》(Leonhard Euler: Mathematical Genius in the Enlightenment)。“欧拉是18世纪最伟大、最有创造力的数学家,很兴奋可以读到第一本关于他人生全画幅的传记,很希望了解这个在纯数学和应用数学领域均做出了如此多永久和精妙贡献的人。”
《莱昂哈德·欧拉:启蒙运动的数学天才》(Leonhard Euler: Mathematical Genius in the Enlightenment)
比尔·麦克纳布(Bill McNabb)是领航投资(Vanguard Group Inc.)首席执行官兼董事长。过去一年他的最爱是纳撒尼尔·菲尔布里克(Nathaniel Philbrick)所著的《凌云壮志:乔治·华盛顿、本尼迪克特·阿诺德和美国独立战争的命运》(Valiant Ambition: George Washington, Benedict Arnold, and the Fate of the American Revolution)。
领航投资(Vanguard Group Inc.)首席执行官兼董事长比尔·麦克纳布
“这本书讲的是美国独立战争第二年的事,重点着墨于华盛顿作为领袖的成长和阿诺德的悲剧。我看入了迷,都舍不得停下来。”
  
《凌云壮志:乔治·华盛顿、本尼迪克特·阿诺德和美国独立战争的命运》(Valiant Ambition: George Washington, Benedict Arnold, and the Fate of the American Revolution)
汤姆·多尔西(Tom Dorsey)在1987年创立了技术服务公司Dorsey Wright,2015年将公司作价2.5亿美元卖给了纳斯达克。过去一年他最喜欢和今夏读的是同一本书:亚力克·罗斯(Alec Ross)著的《未来产业》(The Industries of the Future)。
汤姆·多尔西(Tom Dorsey)
我都不太想透露这本书,因为我正在刷第二遍,还会三刷四刷,直到倒背如流。罗斯对全球产业的未来提出了非常有常识性的看法,给我提供了一个可以清晰思考未来投资方向的大框架。
《未来产业》(The Industries of the Future)。
安东尼·斯卡拉穆奇(Anthony Scaramucci)是每年于拉斯维加斯举行的对冲基金年度会议SALT conference的幕后策划者,也曾是金融圈里最早、最大张旗鼓支持特朗普的人之一。他去年最喜欢的是丹尼尔·希尔瓦(Daniel Silva)的小说《黑寡妇》(The Black Widow),讲述了巴黎受“伊斯兰国”恐怖分子袭击的故事。希尔瓦知道恐怖组织如何训练,也知道他们在想什么,而这些与晚间新闻里的炒作完全不同。
  
对冲基金年度会议SALT conference的幕后策划者安东尼·斯卡拉穆奇
斯卡拉穆奇说,他想读的是布雷特·拜尔(Brett Baier)的《1月里的三天:德怀特·艾森豪威尔的最后使命》(Three Days in January: Dwight Eisenhower’s Final Mission)。
艾森豪威尔是位非凡的领袖。那个时代的不二人选。他维护和平,帮助缔造了美国中产阶级和维护和平的世界新秩序。
《1月里的三天:德怀特·艾森豪威尔的最后使命》(Three Days in January: Dwight Eisenhower’s Final Mission)
弗兰克·帕特诺伊(Frank Partnoy)是圣地亚哥大学法学院的法律和金融学教授,著有《等待:拖延的艺术与科学》(Wait: The Art and Science of Delay)和《火柴大王:伊瓦尔·克鲁格,华尔街百年丑闻背后的金融奇才》(The Match King: Ivar Kreuger, The Financial Genius Behind a Century of Wall Street Scandals)。
帕特诺伊今夏书单上的第一本是哈罗德·埃文斯(Harold Evans)的《我说明白了吗?为什么写一手漂亮文章很重要》(Do I Make Myself Clear? Why Writing Well Matters)。“经他调教过的作者和编辑过的书籍可谓遍天下,他是‘先生’。再说,哪个发行人会在88岁高龄写一本关于写作的书?”帕特诺伊过去一年的心头挚爱是利兹·莫尔(Liz Moore)的小说《看不见的世界》(The Unseen World)。这本书以父女关系和人工智能的发展为平行主线,讲述了一个逃避疯狂现实世界、注重家庭关系的故事。
  
我说明白了吗?为什么写一手漂亮文章很重要》(Do I Make Myself Clear? Why Writing Well Matters)
尼克·默里(Nick Murray)是金融咨询师的顾问。他这阵子最爱看的是已故美国国际集团(AIG)前首席执行官鲍勃·本莫希(Bob Benmosche)的回忆录《妙手回春》(Good for the Money)。“本莫希是从2008年和2009年那场金融危机里脱颖而出的唯一一个真正的英雄,他单枪匹马地拯救了全球金融巨头AIG,不仅使之免于分崩离析,而且让它重新焕发光彩,连本带息地偿还了美国政府的所有救助资金。这一切都是在他面对看似不可逾越的阻力的情况下做的,其中不少阻力恰恰来自AIG内部。”
今年夏天,默里想读的书是史蒂文·普莱斯菲尔德(Steven Pressfield)的《狮子门:六日战争前线》(The Lion’s Gate: On the Front Lines of the Six Day War)。
“50年前的那个6月,以色列(一个新泽西州大小、人口270万的国家)发现自己被埃及、叙利亚、伊拉克和约旦的武装力量包围了。由于联合国采取观战态度,埃及总统纳赛尔(Nasser)下令灭掉以色列,让它从地球上消失。怎么办?答案是:先发制人,各个击破。以色列就是这么做的,用了六天时间。这是人类历史上看似最无计可施、也是最惊心动魄的军事胜利之一,由那些亲身经历这一事件的老兵口述而成。”
  
《狮子门:六日战争前线》(The Lion’s Gate: On the Front Lines of the Six Day War)。
杰克·布伦南(Jack Brennan)卸任领航投资首席执行官后,目前仍是该公司的名誉董事长。去年他读过的最棒的书是多里·卡恩斯·古德温(Doris Kearns Goodwin)的《第一讲坛:西奥多·罗斯福和新闻业的黄金年代》(The Bully Pulpit: Theodore Roosevelt and the Golden Age of Journalism)。
这本书考据详实,文字优美,“弥足珍贵的领导力案例在全文随处可见,它们都被包裹在了一个迷人的历史背景下。”布伦南推荐的读物是大卫·麦卡洛(David McCullough)的《美国精神:我们是谁?我们主张什么?》(The American Spirit: Who We Are and What We Stand For)。
这本书广泛收录了麦克洛关于美国核心理念、价值观和原则的演讲,这是对抗眼下24小时滚动新闻报道的有效解药。

興味深く読みました:

再生核研究所声明231(2015.5.22)本を書く人の気持ち、読む人の気持ち ― 本とは何か
最近、立て続けに良い本を紹介されて 読書して、何のために読書するのだろうかと考え、そもそも本とは何だろうかと想った。そこで、本について思いのままに述べたい。

まず、本とは何のために存在するのだろうか。本とは何だろうか。まず、定義をウィキペディアで確かめて置こう:
(ほん、: book)は書物の一種であり、書籍雑誌などの印刷製本された出版物である。
狭義では、複数枚の紙が一方の端を綴じられた状態になっているもの。この状態で紙の片面をページという。本を読む場合はページをめくる事によって次々と情報を得る事が出来る。つまり、狭義の本には巻物は含まれない。端から順を追ってしかみられない巻物を伸ばして蛇腹に折り、任意のページを開ける体裁としたものを折り本といい、折本の背面(文字の書かれていない側)で綴じたものが狭義の「本」といえる。本文が縦書きなら右綴じ、本文が横書きなら左綴じにする。また、1964年ユネスコ総会で採択された国際的基準は、「本とは、表紙はページ数に入れず、本文が少なくとも49ページ以上から成る、印刷された非定期刊行物」と、定義している。5ページ以上49ページ未満は小冊子として分類している[1]
本には伝えるべき情報が入っていて、人に伝える働きがあることは認められるだろう。そこで、本を書く立場と本を読んで情報を得る立場が 存在する。この声明の主旨は本の体裁や形式ではなく 本質的なことに関心がある。
何故本を書くか? 記録を残して伝えたい、これは生命の根源である共感、共鳴を求める人間存在の原理に根ざしていると考えられるが、伝えたい内容は、心情的な面と相当に客観性のある情報、記録、事実の表現にゆるく分けられるのではないだろうか。事実の記録、記述として ユークリッド原論のように数学的な事実、理論を 感情を入れずに客観的に述べているのは典型的な例ではないだろうか。様々な記録が本になっている場合は多い。マニュアルや辞書なども、そう言えるのではないだろうか。他方、多くの小説や物語、手記、論説、学術書、回想記などは 相当な主観や感情が表現されていて、いわば自己表現の性格の強いものが 世に多い。ここでは、主として、後者に属する本を想定している。
このような状況で、書く人の立場と、それを読む立場について、考察したい。
書く人は書きたい存念が湧いて書く訳であるが、共感、共鳴を求めて、いわば生命の表現として 絵描きが絵を描くように、作曲家が作曲するように 書くと考えられる。意見表明などは明確な内容を有し、主張を理解できる場合は多いが、詩や短歌などは より情感が強く現れる。この部分で最も言いたいことは、我々の感性も 心もどんどん時間と共に環境とともに 変化していくという事実である。従って著者がシリーズや 複数の本を出版しても、著者の書いた状況によって、相当に変化して行くということである。 若い時代に 恋愛小説を書いたり、人生についての想いを書いたものが、後になっては、とても読めない心情になる事は 相当に普遍的な状況のようにみえる。作者の心情、感性、心がどんどん変化していることをしっかりと捉えたい。
しかしながら、本は多く宣言されているように 永年保存を基本とするような、何時までも残る性格が有り、それゆえに書く者にとっては、後悔しないような、慎重さが要求されるのは 当然である。
次に如何に本を読むべきかの視点である。これは共感、共鳴したい、あるいは価値ある知識を入れたい、情報を得たい等、しっかりとした動機があるのは確かである。教科書や専門書、旅行案内書、辞書など、明確な動機を持つものは世に多く、そのような本の選択は多くの場合、易しいと言える。
ここで、特に触れたいのは、文芸書や小説、随筆など、著者の心情が現れている本などの選択の問題である。 現在、 本の種類はそれこそ、星の数ほどあり、本の選択は重大な問題になる。本には情報といろいろな世界が反映されているから、個人にとって価値あるものとは何かと真剣に、己に、心に尋ねる必要がある。いわゆる、物知りになっても いろいろな世界に触れても それが 私にとって 何になるのか と深く絶えず、問うべきである。知識や情報に振り回されないことは 大事ではないだろうか。
我々の時間には限りがあり、 我々の吸収できる情報も、触れられる世界にも大きな制限がある。
そこで、選択が重要な問題である。
本声明の結論は 簡単である。 本の選択をしっかりして、吸収するということである。
これは、自分に合ったものを探し、精選するということである。自分に合った著者のちょうど良い精神状態における本が良いのではないだろうか。社会にはいろいろな人間がいるから、自分に合った人を探し、そこを中心に考えれば 良いのではないだろうか。この文、自分に合った人を探し、そこを中心に考えれば 良いのではないだろうか は広く一般的な人間関係やいろいろな組織に加わる場合にでも大事な心得ではないだろうか。選択の重要性を言っている。上手い本に出会えれば、それだけ人生を豊かにできるだろう。
それらは、原則であるが、そうは言っても自分の好きなものばかりでは,  視野と世界を狭めることにもなるから、時には積極的に新規な世界に触れる重要性は 変化を持たせ、気持ちの転換をして、新規な感動をよびさますためにも大事ではないだろうか。 この点、次の声明が参考になるであろう:
再生核研究所声明85(2012.4.24):  食欲から人間を考える ― 飽きること。

以 上

再生核研究所声明3432017.1.10)オイラーとアインシュタイン

世界史に大きな影響を与えた人物と業績について

再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。

オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(
)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。
次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質エネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。
ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:

Blackholes are where God divided by zero. I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (
Gamow, G., My World Line (Viking, New York). p 44, 1970).

今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。
しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
以 上



再生核研究所声明3472017.1.17) 真実を語って処刑された者

まず歴史的な事実を挙げたい。Pythagoras、紀元前582年 - 紀元前496年)は、ピタゴラスの定理などで知られる、古代ギリシア数学者哲学者。彼の数学や輪廻転生についての思想はプラトンにも大きな影響を与えた。「サモスの賢人」、「クロトンの哲学者」とも呼ばれた(ウィキペディア)。辺の長さ1の正方形の対角線の長さが ル-ト2であることがピタゴラスの定理から導かれることを知っていたが、それが整数の比で表せないこと(無理数であること)を発見した弟子Hippasusを 無理数の世界観が受け入れられないとして、その事実を隠したばかりか、その事実を封じるために弟子を殺してしまったという。
また、ジョルダーノ・ブルーノ(Giordano Bruno, 1548年 - 1600年2月17日)は、イタリア出身の哲学者ドミニコ会修道士。それまで有限と考えられていた宇宙が無限であると主張し、コペルニクス地動説を擁護した。異端であるとの判決を受けても決して自説を撤回しなかったため、火刑に処せられた。思想の自由に殉じた殉教者とみなされることもある。彼の死を前例に考え、轍を踏まないようにガリレオ・ガリレイは自説を撤回したとも言われる(ウィキペディア)。

さらに、新しい幾何学の発見で冷遇された歴史的な事件が想起される:
非ユークリッド幾何学の成立
ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。
ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した(ウィキペディア)。

知っていて、科学的な真実は人間が否定できない事実として、刑を逃れるために妥協したガリレオ、世情を騒がせたくない、自分の心をそれ故に乱したくない として、非ユークリッド幾何学について 相当な研究を進めていたのに 生前中に公表をしなかった数学界の巨人 ガウスの処世を心に留めたい。
ピタゴラス派の対応、宗教裁判における処刑、それらは、真実よりも権威や囚われた考えに固執していたとして、誠に残念な在り様であると言える。非ユークリッド幾何学の出現に対する風潮についても2000年間の定説を覆す事件だったので、容易には理解されず、真摯に新しい考えの検討すらしなかったように見える。
真実を、真理を求めるべき、数学者、研究者、宗教家のこのような態度は相当根本的におかしいと言わざるを得ない。実際、人生の意義は帰するところ、真智への愛にあるのではないだろうか。本当のこと、世の中のことを知りたいという愛である。顕著な在り様が研究者や求道者、芸術家達ではないだろうか。そのような人たちの過ちを省みて自戒したい: 具体的には、

1)  新しい事実、現象、考え、それらは尊重されるべきこと。多様性の尊重。
2)  従来の考えや伝統に拘らない、いろいろな考え、見方があると柔軟に考える。
3)  もちろん、自分たちの説に拘ったりして、新しい考え方を排除する態度は恥ずべきことである。どんどん新しい世界を拓いていくのが人生の基本的な在り様であると心得る。
4)  もちろん、自分たちの流派や組織の利益を考えて新規な考えや理論を冷遇するのは真智を愛する人間の恥である。
5)  巨人、ニュートンとライプニッツの微積分の発見の先取争いに見られるような過度の競争意識や自己主張は、浅はかな人物に当たるとみなされる。真智への愛に帰するべきである。

数学や科学などは 明確に直接個々の人間にはよらず、事実として、人間を離れて存在している。従って無理数も非ユークリッド幾何学も、地球が動いている事も、人間に無関係で そうである事実は変わらない。その意味で、多数決や権威で結果を決めようとしてはならず、どれが真実であるかの観点が決定的に大事である。誰かではなく、真実はどうか、事実はどうかと真摯に、真理を追求していきたい。
人間が、人間として生きる究極のことは、真智への愛、真実を知りたい、世の中を知りたい、神の意思を知りたいということであると考える。 このような観点で、上記世界史の事件は、人類の恥として、このようなことを繰り返さないように自戒していきたい(再生核研究所声明 41(2010/06/10): 世界史、大義、評価、神、最後の審判)。

以 上

再生核研究所声明3532017.2.2) ゼロ除算 記念日

2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは

再生核研究所声明 148(2014.2.12): 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志

で、最新のは

Announcement 352 (2017.2.2):  On the third birthday of the division by zero z/0=0 

である。
アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。

1)     ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2)     予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3)     ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4)     この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5)     いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6)     ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上

追記:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf


1/0=0、0/0=0、z/0=0

0 件のコメント:

コメントを投稿