2017年6月4日日曜日

「AIは既に人間の脳の限界を超えている」、茂木健一郎氏

「AIは既に人間の脳の限界を超えている」、茂木健一郎氏

 
「シンギュラリティはもう来てしまっている」ーー。
 脳科学者の茂木健一郎氏は2017年6月2日、アマゾン ウェブ サービス ジャパン主催の年次イベント「AWS Summit Tokyo 2017」で講演した。2045年ごろに人工知能(AI)が人間の知能を超えるとされる「シンギュラリティ(技術的特異点)」に関して、既にAIが部分的に人間の能力を上回っているという見解を示した。
「AWS Summit Tokyo 2017」で講演する脳科学者の茂木健一郎氏
[画像のクリックで拡大表示]
 茂木氏は人間の認知能力には限界があることを例示した。「人間の意識(処理量)はデータ量で言えばせいぜい毎秒128ビット程度しかない。私は今、この場で話すことに意識の全てを使っている。聞いている皆さんも、その間は公私のいろいろな問題に意識が及ばなくなる」(茂木氏)。
 一方で、AIは機械学習を進めたり、共有したりできると述べた。「自動運転技術のすごいところは自動車1000台単位で学習したデータを共有できること。それぞれ10万~20万キロ程度の走行経験しかない人間の経験を容易に上回る。私が『雪道を走るための学習データが欲しい』と思ってもできないが、AIならできる」(同)。
 茂木氏は「人間の脳の限られたキャパシティなんて気にしないほうがシステム開発の可能性が広がる」と強調。「(米アマゾン・ドット・コムのスマートスピーカーである)『Amazon Echo』には数千のスキルが実装されているというが、『タクシーを呼ぶ』『食べ物を注文する』といったものが多い。確かに便利だが、人間の限界を超えるものではない」と話した。人間の脳では処理し切れないような長時間・大量の音声データをプライバシーに配慮したうえで解析するなど、新たな展開に期待を示した。

人工知能は、ゼロ除算ができるでしょうか:

再生核研究所声明255 (2015.11.3) 神は、平均値として関数値を認識する
(2015.10.30.07:40 
朝食後 散歩中突然考えが閃いて、懸案の問題が解決した:
どうして、ゼロ除算では、ローラン展開の正則部の値が 極の値になるのか?
そして、一般に関数値とは何か 想いを巡らしていた。
解決は、驚く程 自分の愚かさを示していると呆れる。 解は 神は、平均値として関数値を認識すると纏められる。実際、解析関数の場合、上記孤立特異点での関数値は、正則の時と全く同じく コ-シーの積分表示で表されている。 解析関数ではコ-シーの積分表示で定義すれば、それは平均値になっており、この意味で考えれば、解析関数は孤立特異点でも 関数値は 拡張されることになる ― 原稿には書いてあるが、認識していなかった。
 連続関数などでも関数値の定義は そのまま成り立つ。平均値が定義されない場合には、いろいろな意味での平均値を考えれば良いとなる。解析関数の場合の微分値も同じように重み付き平均値の意味で、統一的に定義でき、拡張される。 いわゆるくりこみ理論で無限値(部)を避けて有限値を捉える操作は、この一般的な原理で捉えられるのではないだろうか。2015.10.30.08:25)
上記のようにメモを取ったのであるが、基本的な概念、関数値とは何かと問うたのである。関数値とは、関数の値のことで、数に数を対応させるとき、その対応を与えるのが関数でよく f  等で表され x 座標の点 x  をy 座標の点 yに対応させるのが関数 y = f(x) で、放物線を表す2次関数 y=x^2, 直角双曲線を表す分数関数 y=1/x 等が典型的な例である。ここでは 関数の値 f(x) とは何かと問うたものである。結論を端的に表現するために、関数y=1/xの原点x=0における値を問題にしよう。 このグラフを思い出して、多くの人は困惑するだろう。なぜならば、x が正の方からゼロに近づけば 正の無限に発散し、xが負の方からゼロに近づけば負の無限大に発散するからである。最近発見されたゼロ除算、ゼロで割ることは、その関数値をゼロと解釈すれば良いという簡単なことを言っていて、ゼロ除算はそれを定義とすれば、ゼロ除算は 現代数学の中で未知の世界を拓くと述べてきた。しかし、これは誰でも直感するように、値ゼロは、 原点の周りの値の平均値であることを知り、この定義は自然なものであると 発見初期から認識されてきた。ところが、他方、極めて具体的な解析関数 W = e^{1/z} = 1 + 1/z + 1/2!z^2 + 1/3!z^3 +……. の点 z=0 における値がゼロ除算の結果1であるという結果に接して、人は驚嘆したものと考えられる。複素解析学では、無限位数の極、無限遠点の値を取ると考えられてきたからである。しかしながら、上記の考え、平均値で考えれば、値1をとることが 明確に分かる。実際、原点のコーシー積分表示をこの関数に適用すれば、値1が出てくることが簡単に分かる。そもそも、コーシー積分表示とは 関数の積分路上(簡単に点の周りの円周上での、 小さな円の取り方によらずに定まる)で平均値を取っていることに気づけば良い。
そこで、一般に関数値とは、考えている点の周りの平均値で定義するという原理を考える。
解析関数では 平均値が上手く定義できるから、孤立特異点で、逆に平均値で定義して、関数を拡張できる。しかし、解析的に延長されているとは言えないことに注意して置きたい。 連続関数などは 平均値が定義できるので、関数値の概念は 今までの関数値と同じ意味を有する。関数族では 平均値が上手く定義できない場合もあるが、そのような場合には、平均値のいろいろな考え方によって、関数値の意味が異なると考えよう。この先に、各論の問題が派生する。

以 上


Reality of the Division by Zero $z/0=0$

再生核研究所声明309(2016.06.28) 真無限と破壊 ― ゼロ除算
3辺の長さをa,b,cとする三角形を考える。その位置で、例えば、1辺bをどんどんのばしていく。一方向でも、双方向でも良い。どこまでも、どこまでも伸ばしていくとどうなるであろうか。bは限りなく長くなるが、結局、辺bは a, cの交点Bと平行な直線になって、 それ以上伸ばすことや長くすることはできないことに気づくだろう。正方向だけに伸びれば、辺cは辺bの方向と平行な半曲線に、負の方向に伸びれば、同様に辺aもBを通るbの方向と平行な半曲線になる。いずれの場合にも、bはそれ以上伸びないと言う意味で真無限の長さと表現できるだろう。もちろん、有限の長さではない。大事な観点は、ある意味で、もはやそれ以上伸びない、大きくならないという意味で、限りがあるとも言える無限である。
途中で作られる三角形の面積は辺cをどんどん伸ばしていくと、どんどん増加し、従来の数学では、面積は無限に発散すると表現してきた。平行線で囲まれる(?)面積、あるいは、平行線で囲まれる(?)部分を切った部分(一方向に辺cを伸ばした場合)は面積無限であると考えるだろう。ところがゼロ除算は、それらの面積はゼロであると述べている。 一般に、長さcをどんどん大きくしていくと、幾らでも大きくなって行くのに対して、真無限に至れば突然ゼロになるという結果がゼロ除算の大事な帰結である。 この現象は関数y=1/x の様子をxが正方向からゼロに近づいた状況を考えれば、理解できるだろう。 1/0=0 である。― c を無限に近づけた状況を知るには、1/c の原点での状況を見れば良い。
実に美しいことには、上記三角形の面積の状況は、3直線で囲まれた部分の面積を3直線を表す方程式で書いて、ゼロ除算の性質を用いると、解析幾何学的にも導かれるという事実である。ゼロ除算の結果を用いると、解析幾何学的に証明されるという事実である。
この事実は普遍的な現象として破壊現象の表現として述べられる。直方体の体積でも、1辺を真無限まで伸ばせば、体積はゼロである。円柱でも真無限まで伸ばせば、体積はゼロである。真無限まで行けば、もともとの形が壊れているためと自然に理解できるだろう。
円や球の場合にも、半径が真無限まで行けば、半平面や半空間になるから、同じように面積や体積がゼロになる。これらは、ゼロ除算と解析幾何学からも導かれ、ゼロ除算は基本的な数学であることが分かる。このことは、空間は、限りなく大きなものではないということをも述べていて、 楽しい。

以 上

再生核研究所声明308(2016.06.27) ゼロ除算とは何か、始めてのゼロ除算、ゼロで割ること

相当な記録、解説が蓄積されてきたので、外観する意味で表題の下で簡単に纏めて置こう。
先ず、ゼロ除算とは 加,減,乗,除の四則演算において 割る時にどうしてゼロで割れないかの問題を広く表す。ゼロで割ることを考えることである。西暦628年インドでゼロが文献上の記録として現れて以来議論されてきた。ある専門家によればアリストテレスが物理的にゼロ除算を最初に考え、不可能であるとされたという。割り算を掛け算の逆と考えれば、ゼロで割ることは 割られる数がゼロでなければ、不可能であることが簡単に証明されてしまうが、物理法則などには、分数式が現れて、分母がゼロである場合興味深いとして、現代でもいろいろ問題にされ、インターネット上をにぎわしている。この件では、ブラックホールの理論や相対性理論の関係からアインシュタインの人生最大の懸案の問題であるという言葉に象徴される。他の大きな関心として、計算機がゼロ除算にあって計算機障害を起こした事件から、ゼロ除算障害回避を目指して新しい数体系を考えている相当なグループが存在する。
このような永い歴史に対して、ゼロ除算を可能にする自然で簡単な体系が山田体として確立され、四則演算は 簡単な修正で ゼロ除算を含めていつでも可能であることが明らかになった。しかしながら、ここには分数,割り算の意味を自然に拡張して、可能になったという、新しい概念があるので、扱いには大いに気を付ける必要がある。分母がゼロである場合、ある意味で考えられるという、考え方である。ここは、従来、分数で、分母がゼロになる場合、微分学の基礎概念である、極限で考えるに対して、新しい意味付けを与える方法が発見された。これは、無限級数f(x) = \sum_{n= -\infty}^{\infty} C_n (x –a)^n に対して f(a)=C_0 と簡単に述べられる。具体例で述べれば、関数e^{xt}/(x^2)の原点における値はt^2/2として,関数cos(xt)/(x^3)の原点での値は恒等的にゼロとして意味を有する。このような値の実際的な意味が、幾何学、解析学、解析幾何学,微分方程式など広範に現れて、従来分母がゼロになる場合に避けてきたところ、いろいろな意味と解釈が可能であることが分かってきた。
新しい、状況とは何かであるが、第一には、我々の空間に対する考えに新しい世界が現れたことである。基本的な関数y=1/z の原点での値がゼロと定義されることから、従来無限遠点.無限と考えられていた想像上の点が 実はゼロで表されることになる。そこで、無限が関与する数学が改められることである。極限値として、+、マイナス、無限、あるいは複素平面で、無限は考えられるが、それらは定まった数ではなく、定まった数としての無限の存在を否定する数学になっている。
それで、古典的な結果、原点の原点に中心をもつ円に関する鏡像は 無限遠点ではなく、ゼロであること無限遠点はゼロで表されることなど、 基本的な変更が 要求される。ゼロ除算は可能であり、我々の空間の認識は間違っているということになる。
解析関数は孤立特異点で、と言って、無限遠点の値を取るという考えは改められ、特異点の近くで、幾らでも無限遠点の近くの値を取るものの、特異点では、有限確定値を取ると改められる。
このような有限確定値の具体的な意味付けがいろいろ現れた。顕著な例は、(x,y) 直交座標系で y軸の勾配はゼロで、微分学で微分係数が +、マイナス、無限として極限値が存在するとき、その時、微分係数はゼロであると定義すると、解析学も幾何学も上手く調和して、微分学の多くの公式が付加条件なしに一般的に成り立ち、解析幾何学と調和がとれていることが明らかにされた。数学の相当な部分の修正が必要であり、数学をより美しく、統一的にスッキリと纏められる。
典型的な例として、半径Rの円を考えてRを無限に飛ばすことを考えると、円の面積は当然、限りなく大きくなるが、Rが更には大きくできないとき、円の面積は突然ゼロになることが、解析幾何学とゼロ除算で導かれた。これはRが更には大きくできないときが、円板が半空間、円が直線になる場合で、半平面の面積がゼロであることを示している。このことはある大きな世界を覗かせていて、破壊現象の記述無限の考え方に大きな変革をもたらす。平行線の概念と空間の概念は、新しい世界観であるから、次でより詳しく触れている:

再生核研究所声明306(2016.06.21)平行線公理、非ユークリッド幾何学、そしてゼロ除算

以 上

再生核研究所声明306(2016.06.21) 平行線公理、非ユークリッド幾何学、そしてゼロ除算

表題について、山間部を散歩している折り新鮮な感覚で、想いが湧いて来た。新しい幾何学の発見で、ボーヤイ・ヤーノシュが父に言われた 平行線の公理を証明できたら、地球の大きさ程のダイヤモンドほどの値打ちがあると言われて、敢然と証明に取り掛かった姿とその帰結である。また、ユークリッドが海岸を散歩しながら幾何学を建設していく情景が鮮やかに想い出された(Liwanovaの『新しい幾何学の発見』(のちに『ロバチェフスキーの世界』と改題)(東京図書刊行)。この件、既に声明に述べているので、まずは確認したい:



再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)

まず基本語をウイキペデアで確認して置こう:

https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9

アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。

https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%

非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。



ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。

ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。

この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。

ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。

何と ユークリッド空間で 平行線は ある意味で全て原点で交わっている という、現象が明らかにされた。

もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。

そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。

ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。

この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。

平行線の交わりを考えてみる。交わる異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。

一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。

ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。

                                     

以上



上記で、数学的に大事な観点は、ユークリッド自身そうであったが、平行線公理は真理で、証明されるべきもの、幾何学は絶対的な真理であると非ユークリッド幾何学の出現まで、考えられてきたということである。2000年を超える世界観であった事実である。そこで、平行線の公理を証明しようと多くの人が挑戦してきたが、非ユークリッド幾何学の出現まで不可能であった。実は、証明できない命題であったという全く意外な帰結であった。真に新しい、概念、世界観であった。証明できない命題の存在である。それこそ、世界観を変える、驚嘆すべき世界史上の事件であったと言える。

この事件に関してゼロ除算の発見は、全く異なる世界観を明らかにしている。ユークリッドそして、非ユークリッド幾何学の3人の発見者にとって、全く想像ができなかった、新しい事実である。平行線が 無限の先で交わっているとは ユークリッドは考えなかったと思われるが、近代では、無限の先で交わっていると考えられて来ている。― これには、アーベル、オイラー、リーマンなどの考えが存在する。このような考えは、ここ100年以上、世界の常識、定説になっている。ところがゼロ除算では、無限遠点は 数ではゼロが対応していて、平行線は代数的に原点で交わっている、すべての直線は代数的に原点を通っているという解釈が成り立つことを示している。

ユークリッドの幾何学の建設時の想い、ボーヤイ・ヤーノシュの激しい挑戦の様を、 想い を 深く、いろいろ想像している。

以 上


Matrices and Division by Zero z/0 = 0

0 件のコメント:

コメントを投稿