2017年4月5日水曜日

New Paper Hints at Solution for 160-Year-Old, Million-Dollar Math Problem

New Paper Hints at Solution for 160-Year-Old, Million-Dollar Math Problem

The Riemann hypothesis, which provides important information about the distribution of prime numbers, was first publicised in 1859. Its solution carries a $1-million reward.

A mathematics problem formulated over 150 years ago, and considered to be one of the most important unsolved problems to this day, may have inched closer to a solution with the publication of a new paper in the journal Physical Review Letters on March 30.
The paper’s authors are Carl Bender of the Washington University, Missouri; Dorje Brody, Imperial College, London; and Markus Müller, Western University, Ontario. They have taken on the Riemann hypothesis, which is one of the Clay Mathematics Institute’s seven Millennium Problems. Solving each one of these problems fetches the solver a cash reward of $1 million, not to mention international plaudits. The list was introduced in 2000.
The Riemann hypothesis is rooted in number theory and can be traced to the work of the Swiss mathematician Leonhard Euler, who laid its foundation in the 18th century. In 1859, Bernhard Riemann expanded on Euler’s work to develop a mathematical function that relates the behaviour of positive integers, prime numbers and imaginary numbers. Because of these connections, Riemann’s function shows up in multiple areas of mathematics, including analytic theory and cryptography.
As a result, proving or disproving the Riemann hypothesis is expected to have wide-ranging consequences for the practice of modern mathematics. Its historical significance and underlying complexity is the reason it is listed among the Millennium Problems.
The hypothesis is founded on a function called the Riemann zeta function. Before him, Euler had formulated a mathematical series called Z (s), such that:
Z (s) = (1/1s) + (1/2s) + (1/3s) + (1/4s) + …
He found that Z (2) – i.e., substituting 2 for s in the Z function – equalled π2/6, and Z (4) equalled π4/90. At the same time, for many other values of s, the series Z (s) would not converge at a finite value: the value of each term would keep building to larger and larger numbers, unto infinity. This was particularly true for all values of s less than or equal to 1.
Euler was also able to find a prime number connection. Though the denominators together constituted the series of positive integers, with a small tweak, Z (s) could be expressed using prime numbers alone as well:
Z (s) = [1/(1 – 1/2s)] * [1/(1 – 1/3s)] * [1/(1 – 1/5s)] * [1/(1 – 1/7s)] * …
This was Euler’s last contribution to the topic, and it brought a deeper connection between two kinds of numbers – positive integers and prime numbers – to the fore that meant a lot to mathematicians. As Thomas Wright, a number theorist at Wofford University, South Carolina, has written, “It means that if we want to think about questions related to prime numbers, we can use this Z (s) to translate them to questions about regular old positive integers, which are much easier to deal with.”
Prime numbers are used in a variety of contexts today. Mathematicians studying the different ways in which numbers can be connected to each other are fascinated by them because, for example, they don’t know the pattern in which these numbers occur. Interest in this problem was kicked off by the mathematician Carl Gauss, who wanted to know if there was a simple way to find the number of prime numbers between any two numbers. For example, how many prime numbers are there between 100 and 1,000?
The zeta function
You could count them off one by one, you could write an algorithm for it… or you could wait for Riemann to come up with his famous hypothesis.
So – in the late 1850s, Riemann picked up where Euler left off. And he was bothered by the behaviour of the series of additions in Z (s) when the value of s dropped below 1.
In an attempt to make it less awkward (nobody likes infinities), he tried to modify it such that Z (2) and Z (4), etc., would still converge to interesting values like π2/6 and π4/90, etc. – but while Z (s ≤ 1) wouldn’t run away towards infinity. He succeeded in finding such a function but it was far more complex than Z (s). This function is called the Riemann zeta (ζ) function: ζ (s). And it has some weird properties of its own.
One such is involved in the Riemann hypothesis. Riemann found that ζ (s) would equal zero whenever s was a negative even number (-2, -4, -6, etc.). These values are also called trivial zeroes. He wanted to know which other values of s would precipitate a ζ (s) equalling zero – i.e. the non-trivial zeroes. And he did find some values. They all had something in common because they looked like this: (1/2) + 14.134725142i, (1/2) + 21.022039639i, (1/2) + 25.010857580i, etc.
(i is the imaginary number represented as the square-root of -1.) Obviously, Riemann was prompted to ask another question – the question that has since been found to be extremely difficult to answer, a question worth $1 million. He asked: Do all values of s that are non-negative integers and for which ζ (s) = 0 take the form ‘(1/2) + a real number multiplied by i‘?
In more mathematical terms: “The Riemann hypothesis states that the nontrivial zeros of ζ (s) lie on the line Re (s) = 1/2.”
So if Bender, Brody and Müller have really moved closer to proving that the value of s will always take the form ‘(1/2) + a real number multiplied by i‘, then they will have produced a long-awaited turn of the wheel in an almost 160-year-old problem. And the million dollars awaiting them, or anyone else, at the end of their efforts will likely be the least of their rewards.
Resolving the Riemann hypothesis allows mathematicians to get a better hold of the prime numbers distribution problem. Around 1794, Gauss had asked the question about the number of prime numbers in a given range. As it happened, he had found an approximate solution using calculus called the prime number theorem (PNT). But he wasn’t satisfied with it.
Once Riemann had begun working on Euler’s problems, however, mathematicians realised that the zeta function held an important clue. They found that the approximate number of primes between two numbers calculated using the PNT couldn’t be off the mark by more than a certain value (depending on the range) if the Riemann hypothesis was true. This is a significant relationship between two branches of mathematics. Commentators have frequently remarked that any changes in this relationship could affect modern cryptography because of the latter’s reliance on prime numbers.
Riemann hypothesis and cryptography
In 1977, two computer scientists and a mathematician devised an encryption technique called RSA. An important element of the encryption involves multiplying two randomly chosen prime numbers to generate a very large number. But given a very large such number, computers take a tremendous amount of computing power to determine what its prime factors could be in a reasonable amount of time.
RSA’s usefulness and security will not be affected if the Riemann hypothesis is found to be true. In fact, multiple computer-powered studies in the last few decades have shown that the hypothesis is likely true because the data says so. Subsequently, security experts have been building defensive algorithms assuming that the hypothesis is true. Instead, the real problem for RSA and others like it – if any – could arise from the techniques used to resolve the Riemann hypothesis. These techniques might be able to elucidate a connection between different prime numbers that could be exploited by attackers.
Even so, this is a limited view of what will come once the Riemann hypothesis is laid to rest. As Ragib Zaman, a PhD student at the University of Sydney, wrote on Stack Exchange in 2011: “Most mathematicians don’t want to see [the hypothesis] resolved just for a yes/no answer. It is more important that research into the problem produces new mathematics and deep insights. … The situation is similar to the development of algebraic number theory with the goal of understanding higher reciprocity laws. Along the way a whole new interesting subject opened up spawning many decades of interesting mathematics…”
Cracking Riemann’s question has taken similar paths, cutting through diverse areas of mathematics and physics. The authors of the Physical Review Letters paper have used a branch of mathematics that is commonly used to solve problems in quantum mechanics. But while the mathematics community is excited, and the authors of the paper have themselves noted that their work offers an “optimistic outlook”, they also recognise that some difficult and open problems lie ahead.
In November 2015, a Nigerian academician named Opeyemi Enoch claimed to have cracked the hypothesis, but it was soon discredited. The only Millennium Problem solved till date has been the Poincare conjecture, by the reclusive Russian mathematician Grigori Perelman in 2003. In fact, the resolution of another problem on the list is expected to have bigger implications for cryptography than the Riemann hypothesis: the P versus NP problem.
Note: This article earlier stated that the expression of Z (s) using prime numbers had the addition operator between terms. It is actually multiplication. The mistake was corrected on April 4, 2017.https://thewire.in/120877/riemann-hypothesis-primes-zeta/

とても興味深く読みました:ゼロ除算とリーマン仮説??

再生核研究所声明294(2016.04.05) 素数分布についての前出裕亮君の予想について
8歳の時に巨大素数に興味があると言明された前出裕亮君については、その後もいろいろ言及してきたが:
再生核研究所声明9: 天才教育の必要性を訴える
再生核研究所声明 60:  非凡な才能を持つ少年・少女育成研究会
前出裕亮君のメービウスバンドにおける予想 :小学生3年生の 数学の予想問題2008/09/20:20:3
前出裕亮君の 素数感覚 について (2013.02.01): 
奇妙な発想 上記少年 前出裕亮君については、次のようなことがあり、ブログ記事に書きました:
(前出君の整数に関する予想:2011.2.6.12:00
Announcement 213: An interpretation of the identity $ 0.999999...... =1$

2016/04/03 20:14 素数の差に関する考察を送ってきた。素数分布についての興味深い予想が述べられているので、纏めて置きたい。正確な定式化は相当な難問であると考えられる。

予想の基本は次の2点である:
A、となり合う素数の差が6の倍数である割合が高い
B、となり合う素数の差が6の倍数ではない偶数である割合は低い
(ただし、小さい方から1,000,000個の素数から任意に抽出して調べている)

裏付ける事実として、1000000個の各素数の差がそれぞれいくつあるかをまとめてグラフにしている。(縦軸:個数の対数表示 横軸:差)

Aに関して
 素数の差がn(n≡0 mod6)(6, 12, …)である割合   約43.2%
 素数の差がn(n≡2 mod6) (2, 8, …)である割合   約28.4%
 素数の差がn(n≡4 mod6)(4, 10, …)である割合   約28.4%

Bに関して
 素数の差がn(n≡0 mod8)(8, 16, …)である割合   約17.1%
 素数の差がn(n≡0 mod10)(10, 20, …)である割合   約16.4%
 素数の差がn(n≡0 mod14)(14, 28, …)である割合   約8.84%
 素数の差がn(n≡0 mod16)(16, 32, …)である割合   約5.55%

均等に素数が配分されているならば、それぞれ25.0%, 20.0%, 14.3%, 12.5%に近づくはずであるから、Bの考察がいえる。

グラフからも差が6の倍数であるものが突出していることがわかる。


考察の進め方、予想の立て方、いずれも素晴しい独創性を有するものとして注目される。
興味深いグラフである。今後の問題として提起して置きたい。
以 上

再生核研究所声明3432017.1.10)オイラーとアインシュタイン

世界史に大きな影響を与えた人物と業績について

再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。

オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(
)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。
次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質エネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。
ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:

Blackholes are where God divided by zero. I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (
Gamow, G., My World Line (Viking, New York). p 44, 1970).

今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。
しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
以 上



再生核研究所声明3472017.1.17) 真実を語って処刑された者

まず歴史的な事実を挙げたい。Pythagoras、紀元前582年 - 紀元前496年)は、ピタゴラスの定理などで知られる、古代ギリシア数学者哲学者。彼の数学や輪廻転生についての思想はプラトンにも大きな影響を与えた。「サモスの賢人」、「クロトンの哲学者」とも呼ばれた(ウィキペディア)。辺の長さ1の正方形の対角線の長さが ル-ト2であることがピタゴラスの定理から導かれることを知っていたが、それが整数の比で表せないこと(無理数であること)を発見した弟子Hippasusを 無理数の世界観が受け入れられないとして、その事実を隠したばかりか、その事実を封じるために弟子を殺してしまったという。
また、ジョルダーノ・ブルーノ(Giordano Bruno, 1548年 - 1600年2月17日)は、イタリア出身の哲学者ドミニコ会修道士。それまで有限と考えられていた宇宙が無限であると主張し、コペルニクス地動説を擁護した。異端であるとの判決を受けても決して自説を撤回しなかったため、火刑に処せられた。思想の自由に殉じた殉教者とみなされることもある。彼の死を前例に考え、轍を踏まないようにガリレオ・ガリレイは自説を撤回したとも言われる(ウィキペディア)。

さらに、新しい幾何学の発見で冷遇された歴史的な事件が想起される:
非ユークリッド幾何学の成立
ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。
ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した(ウィキペディア)。

知っていて、科学的な真実は人間が否定できない事実として、刑を逃れるために妥協したガリレオ、世情を騒がせたくない、自分の心をそれ故に乱したくない として、非ユークリッド幾何学について 相当な研究を進めていたのに 生前中に公表をしなかった数学界の巨人 ガウスの処世を心に留めたい。
ピタゴラス派の対応、宗教裁判における処刑、それらは、真実よりも権威や囚われた考えに固執していたとして、誠に残念な在り様であると言える。非ユークリッド幾何学の出現に対する風潮についても2000年間の定説を覆す事件だったので、容易には理解されず、真摯に新しい考えの検討すらしなかったように見える。
真実を、真理を求めるべき、数学者、研究者、宗教家のこのような態度は相当根本的におかしいと言わざるを得ない。実際、人生の意義は帰するところ、真智への愛にあるのではないだろうか。本当のこと、世の中のことを知りたいという愛である。顕著な在り様が研究者や求道者、芸術家達ではないだろうか。そのような人たちの過ちを省みて自戒したい: 具体的には、

1)  新しい事実、現象、考え、それらは尊重されるべきこと。多様性の尊重。
2)  従来の考えや伝統に拘らない、いろいろな考え、見方があると柔軟に考える。
3)  もちろん、自分たちの説に拘ったりして、新しい考え方を排除する態度は恥ずべきことである。どんどん新しい世界を拓いていくのが人生の基本的な在り様であると心得る。
4)  もちろん、自分たちの流派や組織の利益を考えて新規な考えや理論を冷遇するのは真智を愛する人間の恥である。
5)  巨人、ニュートンとライプニッツの微積分の発見の先取争いに見られるような過度の競争意識や自己主張は、浅はかな人物に当たるとみなされる。真智への愛に帰するべきである。

数学や科学などは 明確に直接個々の人間にはよらず、事実として、人間を離れて存在している。従って無理数も非ユークリッド幾何学も、地球が動いている事も、人間に無関係で そうである事実は変わらない。その意味で、多数決や権威で結果を決めようとしてはならず、どれが真実であるかの観点が決定的に大事である。誰かではなく、真実はどうか、事実はどうかと真摯に、真理を追求していきたい。
人間が、人間として生きる究極のことは、真智への愛、真実を知りたい、世の中を知りたい、神の意思を知りたいということであると考える。 このような観点で、上記世界史の事件は、人類の恥として、このようなことを繰り返さないように自戒していきたい(再生核研究所声明 41(2010/06/10): 世界史、大義、評価、神、最後の審判)。

以 上

再生核研究所声明3532017.2.2) ゼロ除算 記念日

2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは

再生核研究所声明 148(2014.2.12): 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志

で、最新のは

Announcement 352 (2017.2.2):  On the third birthday of the division by zero z/0=0 

である。
アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。

1)     ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2)     予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3)     ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4)     この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5)     いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6)     ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上

追記:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

0 件のコメント:

コメントを投稿