ゼロで割る」ことの意味
明けましておめでとうございます。
正月の暇つぶしに少々駄文を。少し前に話題になった「ゼロで割る」問題ですが、
正月の暇つぶしに少々駄文を。少し前に話題になった「ゼロで割る」問題ですが、
小学校で「0で割ったら0」という内容を教えているところがあるようです。自分の学校でもそうだ、という方がいらっしゃいましたらコメント欄に市区単位で場所をかいてください
むろん、数学的な答えは「解なし(不定)」、「∞または-∞」で正しいのですが。
「ゼロで割る」を物理に持ってくるとまたちょっと違った深い意味を持って来ます。
なので ↑ で終わらせるのは少々もったいないなぁ..と。
「ゼロで割る」を物理に持ってくるとまたちょっと違った深い意味を持って来ます。
なので ↑ で終わらせるのは少々もったいないなぁ..と。
相対性理論に潜む「ゼロで割る」問題
さて、物理で見られる「ゼロで割る」パターンですが。
典型的なケースとしてアインシュタインの重力方程式を見て行きましょう。
典型的なケースとしてアインシュタインの重力方程式を見て行きましょう。
一般相対性理論 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 質量(地球)が空間の幾何学をゆがめている様子を2次元に落とし込んで描いたところ 歪んだ幾何学自体が重力と解釈できる 一般相対性理論 アインシュタイン方程式 入門 数学的定式化 関連書籍 基本概念 特殊相対性理論 等価原理 世界線 · リーマン幾何学 現象 ケプラー問題 · レンズ · 重力波 …
シュヴァルツシルトの解 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 シュヴァルツシルトの解 (シュヴァルツシルトのかい)あるいは シュヴァルツシルト計量 ( Schwarzschild metric ) は、 一般相対性理論 における アインシュタイン方程式 (重力場の方程式)の解の 1 つで、 カール・シュヴァルツシルト が 1916年 に導き出した…
重力方程式は「物質を空間に置いたら、その重力はどうなるか?」を計算するための式です。
で、シュバルツシルト解は「静止した物質が1つだけポツンとあったら?」という最も単純な条件のもとで導き出された重力方程式の解です。ブラックホールの存在を予言した解として有名ですね。
詳しい説明は省きますが、このシュバルツシルト解に「ゼロで割る」問題が潜んでいます。
単純に言えば、
で、シュバルツシルト解は「静止した物質が1つだけポツンとあったら?」という最も単純な条件のもとで導き出された重力方程式の解です。ブラックホールの存在を予言した解として有名ですね。
詳しい説明は省きますが、このシュバルツシルト解に「ゼロで割る」問題が潜んでいます。
単純に言えば、
重心からゼロ距離の場合、重力はどうなるのか?
ということです。
質量m、重心からの距離rとした場合、シュバルツシルト解にはm/rを計算する項が含まれるのでr=0の時に導かれる重力は「解なし」もしくは「無限大」となります。
もし仮に重力が無限大になるとしても、無限の重力エネルギーが存在することになってしまい、これはエネルギー保存則が破綻してしまうことを意味します。
つまり物質の重心においては、
質量m、重心からの距離rとした場合、シュバルツシルト解にはm/rを計算する項が含まれるのでr=0の時に導かれる重力は「解なし」もしくは「無限大」となります。
もし仮に重力が無限大になるとしても、無限の重力エネルギーが存在することになってしまい、これはエネルギー保存則が破綻してしまうことを意味します。
つまり物質の重心においては、
うちゅうの ほうそくが みだれる!
ということになってしまいます。
この大いなる矛盾について、現代の物理学者たちはどう説明しているのかと申しますと。
この大いなる矛盾について、現代の物理学者たちはどう説明しているのかと申しますと。
ブラックホールの事象の地平線内部は光さえも逃げられない空間。
なので、こちらからはどうやっても何が起こってるか知りようがない、知りようがないものは考える必要はないんだよHAHAHA
宇宙検閲官仮説 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 宇宙検閲官仮説 (うちゅうけんえつかんかせつ)または、 宇宙検閲仮説 (うちゅうけんえつかせつ、cosmic censorship hypothesis)とは、 一般相対性理論 研究に登場する 概念 で、 時空 に 裸の特異点 が自然に発生することはないだろう、という ロジャー・ペンローズ が…
..という説明でお茶を濁しておりました。
ところがです。90年代に入りコンピュータシミュレーションによって、事象の地平線の外側(つまりわれわれ人類が存在する通常空間)において重力の特異点が出現するケースがありうる、ということが証明されてしまいました。コンピュータってすごいね!
ところがです。90年代に入りコンピュータシミュレーションによって、事象の地平線の外側(つまりわれわれ人類が存在する通常空間)において重力の特異点が出現するケースがありうる、ということが証明されてしまいました。コンピュータってすごいね!
裸の特異点 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 裸の特異点 (はだかのとくいてん、 naked singularity )は、 一般相対性理論 における用語で、 事象の地平面 ( event horizon ) に囲まれていない、 時空 の 特異点 である。 通常、 ブラックホール の特異点は、 光 も出て行くことができない 空間 に囲まれてお…
以上から、一般相対性理論は「常に成り立つ」わけではない、ということがわかります。
ニュートンの古典力学がアインシュタインの相対性理論によって補正されたように。
ゼロ距離に近い量子サイズにおいては、相対論すら修正されるべき「何か」があると考えるべきです。
ニュートンの古典力学がアインシュタインの相対性理論によって補正されたように。
ゼロ距離に近い量子サイズにおいては、相対論すら修正されるべき「何か」があると考えるべきです。
量子重力理論 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 標準模型を超える物理 陽子同士を衝突させハドロンジェットと 電子に崩壊することで生成される ヒッグス粒子 を描く LHC CMS検出器 データのシミュレーション結果 標準模型 証拠 階層性問題 ダークマター 宇宙定数問題 強いCP問題 ニュートリノ振動 理論 テクニカラー カルツァ=クライン理論…
この「何か」が現在未完成の「量子重力理論」と呼ばれているもので、その最有力候補、とされているのが少し前ノーベル賞を受賞した南部先生も大きく関わっている「超ひも理論」です。
超弦理論 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 この記事の 正確性に疑問 が呈されています。 問題箇所に 信頼できる情報源 を示して、記事の改善にご協力ください。議論は ノート を参照してください。 ( 2007年7月 ) カラビ-ヤウ空間 弦理論 超弦理論 理論 弦理論 ボゾン弦理論 M理論 ( 簡易項目 ) タイプI超弦 · タイプII超…
超ひも理論は非常に有望な「究極の理論」として期待されているのですが、残念ながら現在人類の持てる科学技術力では実験で検証できないため「仮説」の領域に留まっています。
あまりに数学的・抽象的な概念を持つ理論のため、
あまりに数学的・抽象的な概念を持つ理論のため、
もはや哲学の領域
と陰口をたたかれることもしばしばです。で、
結論
重心からゼロ距離の場合、重力はどうなるのか?
という最初の問いですが。
量子重力理論が正しいとするならば、時間・空間は連続的ではなく離散的なモノ(つまり最小単位が存在する)ことになりますので、
量子重力理論が正しいとするならば、時間・空間は連続的ではなく離散的なモノ(つまり最小単位が存在する)ことになりますので、
時間・空間が取り得る最小単位(おそらくプランク長程度)以下になることはない、とみなすことができる。よって「ゼロ距離」という物理量は存在しないと考えてよい。
というのがその解答になるのではないかと。
..以上、いかがでしたでしょうか?お楽しみ頂ければ幸いです。それでは。
..以上、いかがでしたでしょうか?お楽しみ頂ければ幸いです。それでは。
再生核研究所声明325(2016.10.14) ゼロ除算の状況について ー 研究・教育活動への参加を求めて
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更は かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド空間とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、ゼロ除算の教育、研究は日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の協力、参加をお願いしたい。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。数学はより美しく、完全であった。さらに、数学の奥深い世界を示している。ゼロ除算を含む体の構造、山田体が確立している。その考えは、殆ど当たり前の従来の演算の修正であるが、分数における考え方に新規で重要、面白い、概念がある。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童・生徒たちにも歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。応用する。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直交座標系で y軸の勾配はゼロであること。真無限における破壊現象、接線などの新しい性質、解析幾何学との美しい関係と調和。すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること。行列式と破壊現象の美しい関係など。三角関数や初等関数でも考え方を修正、補充する。直線とは、そもそも、従来の直線に原点を加えたもので、平行線の公理は実は成り立たず、我々の世界は、ユークリッド空間でも、いわゆる非ユークリッド幾何学でもない、新しい空間である。原点は、あらゆる直線の中心になっている。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の発展の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し ― ゼロ除算算法、広範な応用を展開する。最も顕著な例は、tan 90度 の値がゼロであることで、いろいろ幾何学的な説明は、我々の空間の認識を変えるのに教育的で楽しい題材である。特に微分係数が正や負の無限大に収束(発散)する時、微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法で統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。新しい、関数の素性が見えてくる。
複素解析学において 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点自身では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学的な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円に関する鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考え方の修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。これはアリストテレスの世界の連続性の概念を変えるもので強力な不連続性を示している。 ― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響があり、さらに哲学、宗教、文化への大きな影響がある。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、数学者ばかりではなく、人類の名誉にも関わることである。実際、ゼロ除算の歴史は 止むことのない闘争の歴史とともに人類の恥ずべき人類の愚かさの象徴となるだろう。世間ではゼロ除算について不適切な情報が溢れていて 今尚奇怪で抽象的な議論によって混乱していると言える。― 美しい世界が拓けているのに、誰がそれを閉ざそうと、隠したいと、無視したいと考えられるだろうか。我々は間違いを含む、不適切な数学を教えていると言える: ― 再生核研究所声明 41: 世界史、大義、評価、神、最後の審判 ―。
地動説のように真実は、実体は既に明らかである。 ― 研究と研究成果の活用の推進を 大きな夢を懐きながら 要請したい。 研究課題は基礎的で関与する分野は広い、いろいろな方の研究・教育活動への参加を求めたい。素人でも数学の研究に参加できる新しい初歩的な数学を沢山含んでいる。ゼロ除算は発展中の世界史上の事件、問題であると言える。
以 上
追記:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf DOI:10.12732/ijam.v27i2.9.
*156 Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and
Applications -Plenary Lectures: Isaac 2015, Macau, China.
(Springer Proceedings in Mathematics and Statistics, Vol. 177) Sep. 2016 305 pp. (Springer)
Paper:Division by Zero z/0 = 0 in Euclidean Spaces
Dear Prof. Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
With reference to above, The Editor-in-Chief IJMC (Prof. Haydar Akca) accepted the your paper after getting positive and supporting respond from the reviewer.
Now, we inform you that your paper is accepted for next issue ofInternational Journal of Mathematics and Computation 9 Vol. 28; Issue 1, 2017),
数学基礎学力研究会のホームページ
URLは
再生核研究所声明316(2016.08.19) ゼロ除算における誤解
(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更は かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
以 上
再生核研究所声明287(2016.02.12) 神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算
(最近 相当 ゼロ除算について幅広く歴史、状況について調べている。)
ゼロ除算とは ゼロで割ることを考えることである。ゼロがインドで628年に記録され、現代数学の四則演算ができていたが、そのとき、既にゼロで割ることか考えられていた。しかしながら、その後1300年を超えてずっと我々の研究成果以外解決には至っていないと言える。実に面白いのは、628年の時に、ゼロ除算は正解と判断される結果1/0=0が期待されていたということである。さらに、詳しく歴史を調べているC.B. Boyer氏の視点では、ゼロ除算を最初に考えたのはアリストテレスであると判断され、アリストテレスは ゼロ除算は不可能であると判断していたという。― 真空で比を考えること、ゼロで割ることはできない。アリストテレスの世界観は 2000年を超えて現代にも及び、我々の得たゼロ除算はアリストテレスの 世界は連続である に反しているので受け入れられないと 複数の数学者が言明されたり、情感でゼロ除算は受け入れられないという人は結構多い。
数学界では,オイラーが積極的に1/0 は無限であるという論文を書き、その誤りを論じた論文がある。アーベルも記号として、それを無限と表し、リーマンもその流れで無限遠点の概念を持ち、リーマン球面を考えている。これらの思想は現代でも踏襲され、超古典アルフォースの複素解析の本にもしっかりと受け継がれている。現代数学の世界の常識である。これらが畏れ多い天才たちの足跡である。こうなると、ゼロ除算は数学的に確定し、何びとと雖も疑うことのない、数学的真実であると考えるのは至極当然である。― ゼロ除算はそのような重い歴史で、数学界では見捨てられていた問題であると言える。
しかしながら、現在に至るも ゼロ除算は広い世界で話題になっている。 まず、顕著な研究者たちの議論を紹介したい:
論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。
またフランスでも、奇怪な抽象的な世界を建設している人たちがいるが、個人レベルでもいろいろ奇怪な議論をしている人があとを立たない。また、数学界の難問リーマン予想に関係しているという。
直接議論を行っているところであるが、ゼロ除算で大きな広い話題は 特殊相対性理論、一般相対性理論の関係である。実際、物理とゼロ除算の関係はアリストテレス以来、ニュートン、アインシュタインの中心的な課題で、それはアインシュタインの次の意味深長な言葉で表現される:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
数学では不可能である、あるいは無限遠点と確定していた数学、それでも話題が尽きなかったゼロ除算、それが予想外の偶然性から、思いがけない結果、ゼロ除算は一般化された除算,分数の意味で、何時でも唯一つに定まり、解は何時でもゼロであるという、美しい結果が発見された。いろいろ具体的な例を上げて、我々の世界に直接関係する数学で、結果は確定的であるとして、世界の公認を要請している:
再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める
Announcement 282: The Division by Zero $z/0=0$ on the Second Birthday
詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
以 上
何故ゼロ除算が不可能であったか理由
1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。
Matrices and Division by Zero z/0 = 0
0 件のコメント:
コメントを投稿