2014年12月3日水曜日

算術

算術
曖昧さ回避 この項目では、学問分野の算術について説明しています。ディオファントスが著した数学書については「算術 (書物)」をご覧ください。
算術 (さんじゅつ、英: arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きをあきらかにしようとする学問分野である。「算術」という日本語としては、文明開化前後の「数学」(mathematics)いわゆる西洋数学の本格的な輸入以前は、こんにち和算と呼ばれているような、当時の、いわゆる「日本の数学」全般を指していた。
現代日本では、おもに数学教育の小学校における部分(教科名としては、1940年代以降では算数と称される)として学ばれるもののことを指す。その大部分は、四則演算(加減乗除、加法(足し算)・減法(引き算)・乗法(掛け算)・除法(割り算))の習熟に当てられる。
またこの言葉、とくに "Arithmetic" は、時によっては数論を指し示すこともある。
四則演算[編集]
算術における加算 (+) ・減算 (-) ・乗算 (×) ・除算 (÷) の4つの二項演算のことをあわせて、算術の四則(しそく)あるいは四則演算と称する。自然数の間に定義される四則演算のうち、減算と除算には大きな制約があり、これを解消する操作を通じて整数や有理数(とくに正の分数)にまで数の範囲を広げて四則演算を考えることができるようになる。
四則演算を特徴付ける性質には、交換法則・結合法則・分配法則などがあり、抽象代数学では四則演算が自由にできる集合のことを体という。有理数の全体、実数の全体、複素数の全体などは全て体である。
除算は乗算の逆の演算になっている;a × b = c ならば、a = c /b, b = c /a が成り立つ。a × b = 1 となるような b を a の逆数といい、1/a と表す。
減算についても、a + b = c ならば a = c - b, b = c - a であるから、× が + に、/ が - に置き代わっただけで上の式と全く同じことが起こっている。つまり、減算は加算の逆の演算である。ここから自然に、a + b = 0 となるような b を考えることに導かれる。この b は負の数であり、-a と表す。
算術演算[編集]
コンピュータの用語として、論理和や論理積などのビットを扱う論理演算に対して、四則演算に代表される数値を扱う演算を算術演算と呼ぶ。
また、右シフト操作において、その操作で空くビットに、最上位ビットを複製して埋めるシフトを算術シフト、0で埋めるシフトを論理シフト と言う。これは歴史的にそのように呼ばれているが、現代的には、符号付き(signed)のシフトと、符号無し(unsigned)のシフト、と呼ぶのが理にかなっている(符号付数値表現#2の補数)。
関連項目[編集]
数論
素数
合同式
体 (数学)
算法
算術平均
算術級数
ビット演算
和算
演算子の優先順位

ゼロ除算100/0=0, 0/0=0の意義:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 決定的な解をもたらしたこと。
2)ゼロ除算の導入で、四則演算 加減乗除において ゼロで割れないの例外から、例外なく四則演算が可能である という 美しい構造が確立された。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた(注参照)。それが、無限遠点は数では、無限ではなくて、実はゼロであったという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、 独楽の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アイシュタインの理論でも重要な問題になっていたとされている。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は全複素平面を一対一onto に写すと美しい性質に変わるが、 極である1点における不連続性が現れ、ゼロ除算は、無限遠点を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点て、有限な確定値を取る である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数 y = 1/x のグラフは、原点で ゼロである
すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。

0 件のコメント:

コメントを投稿