2016年8月7日日曜日

無限なものはふたつあります。宇宙と人間の愚かさ。~アインシュタイン【科学者の智慧 vol.05】

無限なものはふたつあります。宇宙と人間の愚かさ。~アインシュタイン【科学者の智慧 vol.05】

2016年8月6日ヒサカタハルカ PEOPLE, TECHNOLOGY 原子爆弾, 平和, 科学者
E=mc2 のすさまじさとは?

アルベルト・アインシュタイン(Albert Einstein)……1879~1955。「天才」の代名詞でもあるドイツ生まれのユダヤ人理論物理学者。「相対性理論」はあまりに有名だ。

einstein
Photo: Albert Einstein By Peter Wagner


アインシュタインといえば、特殊相対性理論の証明式

E=mc2

が広く知られている。質量をエネルギーに変換したとき発生するエネルギー量は質量×光速の自乗に比例するという法則だ。

この原理を応用したのが原子爆弾だ。アインシュタインは原爆の直接の生みの親ではないにせよ、直系の祖先のひとりには数えられるだろう。



さて、質量はどれくらいの変換率でエネルギーに変わるのだろうか?

atomic-bomb-mushroom-cloud-explosion
Photo via Visual Hunt


わかりやすい例を挙げよう。

広島に投下された原爆に搭載されていたウラン235の質量は、爆発によって約0.7g減少しただろうと推測されている。

この1円玉1枚分にも満たないわずかな質量は、1000万度というとてつもない熱エネルギーに変換され、ひとつの都市を壊滅させるほどの衝撃波と爆発を生んだ。

SONY DSC
Photo credit: twicepix via Visual Hunt / CC BY-SA


その被害について興味がある方は、次の資料をご覧いただきたい。

HIROSHIMA PEACE SITE



天才は大統領に2通の手紙を送った

広島・長崎に投下された原爆はアメリカのマンハッタン計画によって開発・製造された。

マンハッタン計画の経緯はこうだ。

1939年、第二次世界大戦直前。ニールス・ボーアという物理学者が原子核分裂予想を発表した。これによって世界中の物理学者が「原爆は製造可能である」ことに気付いてしまった。いくつかの国が核開発に乗り出したが、そのなかにはナチス・ドイツも含まれていた。

アメリカに亡命したユダヤ人物理学者レオ・シラードは、ナチスが世界に先駆けて核兵器を保有することを恐れ、当時のアメリカ大統領・ルーズベルトに核開発を推進するよう提言する手紙を送った。

シラードは手紙の権威付けのため、同じ亡命ユダヤ人として親交があったアインシュタインに署名を依頼した。だからこの手紙は「アインシュタイン=シラードの手紙(Einstein-Szilard letter)」と呼ばれている。

ルーズベルトはこの手紙を読み、アメリカはマンハッタン計画をスタートした。途方もない予算が注ぎ込まれ、アメリカはナチスよりも早く原爆を完成させることに成功する。(ちなみにアインシュタインはマンハッタン計画には一切関わっていない)。

800px-Leo_Szilard
物理学者のレオ・シラード/DOE Digital Archive Image 2017774. “Credit: DOE Photo”


ナチスが降伏した後、原爆を日本に投下する計画があることを知ると、シラードは「日本に原爆を落とすな」というメッセージを伝えるため、アインシュタインに大統領宛ての紹介状を書くよう依頼した。アインシュタインはこれを承諾したが、メッセージが大統領に届くことはなかった。1945年4月12日、ルーズベルト大統領が脳卒中で急死したからだ。

それから4カ月後、原爆は広島と長崎に投下された。

天才は署名を悔やんだ

ナチスに迫害されてアメリカに亡命したユダヤ人科学者たちは「絶対にナチスより先に原爆を作らなくてはならない」と考えていた。しかしそれは「ナチスより先に原爆を所有することで、ナチスが原爆を使用するのを抑制できるだろう」と考えたためで、核兵器を使うためではなく、核抑止力のために開発を急いだのだった。

平和主義者として知られるアインシュタインがEinstein-Szilard letterに署名したのも、おそらくは核抑止力を信じてのことだったと思われる。

しかし、原爆は実際に使用されてしまった。

そして第二次大戦後、米ソは冷戦下で水爆実験競争をエスカレートさせていく。



アインシュタインの少しシニカルな名言がある。

Only two things are infinite, the universe and human stupidity and I’m not sure about the former. 

無限なものがふたつあります。それは宇宙と人間の愚かさ。ただし前者については断言できませんが。



56ce24f332fa833642ec96b39ef8e437-1038x576
Albert Einstein during a lecture in Vienna in 1921 (age 42).
たとえ宇宙に果てがあろうとも、人間の愚かさには際限がない。アインシュタインの深いため息が聞こえてきそうな感慨深い言葉だ。

そんな頃、イギリスの哲学者バートランド・ラッセルが、核兵器廃絶と科学の平和利用を訴える声明を起草する。いわゆるラッセル=アインシュタイン宣言(The Russell-Einstein Manifesto)だ。アインシュタインはラッセルの呼びかけに応じ、宣言に署名した。

ラッセル=アインシュタイン宣言を要約すると次のようになる。

「人類は悲劇的な状況に直面している。水爆による戦争は人類に終末をもたらす可能性がある。

私たち科学者は世界各国政府に対し、核兵器を廃絶し紛争解決のための平和的手段を見いだすよう勧告する」

署名の1週間後、アインシュタインは76歳の生涯を終えた。

そして、ラッセル=アインシュタイン宣言はアインシュタインの全人類に向けた遺言状となった。

<参考書籍>

アインシュタイン平和書簡3 オットー・ネーサン著 みすず書房
http://nge.jp/2016/08/06/post-133831


再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界

(12月10日16時 論文精読を一通り通読したら無性に書きたくなって始めたものである)
これは声明166の延長にあるので、まず、その要点を振り返っておこう: ―
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観:
ゼロ除算の新しい結果とは 簡単に述べれば、分数、割り算の意味を自然に拡張すると、あるいは割り算の固有の意味から、何でもゼロで割れば ゼロになると言うこと、そして、
関数 y = 1/x のグラフは、原点で ゼロである、すなわち、 1/0=0 である。複素解析学では、無限遠点が数値で0、すなわち、原点に一致している ということである。驚くべきことは、原点における 強力な不連続性にある。これらの現象は奇妙にも、ユニバースの普遍的な現象として 惹きつけるものがある。永遠の彼方は、どこまでも遠く行くが、その先は、突然、現在に戻っている。始点と終点の一致、無限とゼロの一致である。理想的な2つの質点間に働く、ニュートンの万有引力F は 2つの質量をm、M、万有引力定数をGとすると、距離をrとすれば
F = G mM/r^2。
rをゼロに近づければ 正の無限に発散するが、rが ゼロに成れば突然、ゼロである。2つの質点が重なれば、力は働かず、安定しないように見えるが、2つが分離すれば、大きな力に逆らう必要が有り、実は安定していると説明できる。ゼロと無限の裏腹の関係と捉えることができる。これは意外に、2元論における 対立するもの一般における裏腹の関係と捉えることができる: 生と死、戦争と平和、男と女、表と裏、すなわち、2元論― 神は2を愛し給う:
No.81, May 2012(pdf 432kb)
19/03/2012 - ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅広く 面白く触れたい。
における 2元の奇妙な関係である。
他方、ゼロ除算は、爆発や衝突における強力な不連続性を表現しているとして、論文で触れられているが、まこと、ユニバースの普遍的な現象として そのような強力な不連続性が存在するのではないだろうか。糸でも切れる瞬間と切れるまでの現象、物体でも近づいている場合と合体した場合では、全然違う現象として考えられ、強力な不連続性は 世に見られる普遍的な現象ではないだろうか。
生も死も表裏一体である、勝利も敗北も、喜びも苦しみも、幸せも不幸も、自由も束縛も、愛も憎しみも、等々表裏一体であるとの世界観が 視野と心の在りように新しい世界観をもたらすと考えられる。―
ゼロ除算の、無限とゼロの微妙な関係に驚嘆している間に、空がどんどん晴れてくるように新しい世界の、視野がどんどん広がり、驚きの感情が湧いている。言わば、明暗が、両極端のように、明、暗と分けられたものではなく、微妙な密接な、関係である。その内容は広がりと深さを持っていて簡単に表現できるものではない。また、みえた世界をそのまま表現すれば、現在でもなお、天動説が地動説に変わったときのように、また、非ユークリッド幾何学が出現したときのように 世は騒然となるだろう。そこで、注意深く、各論を、断片を 折をみて、表現しよう。
そこで、初回、生命の本質的な問題、生と死の問題をすこし触れたい。
食物連鎖の生物界の冷厳な事実、食われるものと食うものの立場。声明36で大きな命の概念で全体を捉えようとしたが、それらは殆ど等価の立場ではないだろうか。実際、猫がねずみをくわえて誇らしげに通りすぎていくのを見た。ところが奇妙にも、ねずみは歓喜の喜びにひたって悠然としてくわえられているようにみえた。自然の理。蛇が燕の巣を襲い、全滅させられたが、蛇は悠然と上手くいきました、ごめんなさいというような表情で消えていった。襲われた燕たちは一瞬で魔神に掛かったように気を失い、蛇に飲み込まれてしまった。少し、経つと元気に巣立ち厳しい自然の中を南国まで飛んで行っていろいろ苦労するよりは、蛇のお腹で 安らかな終末の方がよほどましだというような情感を覚えた。もちろん、ヒナを襲われた親鳥は切なく天空を舞っていたが、やがて、ヒナたちは最も良い生涯を終えたと、本能的に感じて、新しい生命活動に、励み出している。このようなことを何万年と繰り返してきたのが、燕と蛇の関係である。暗(あん)という面には ちょうど明(めい)と同じような明るい面があるのではないだろうか。明暗は対立概念ではなくて、微妙に調和がとれているのではないだろうか。ユニバースにおける全体の調和を観、述べている。人類が生命のただ延長を志向しているとすれば、それは、古い世界観に基づく無明の世界だろう。夜明けを迎えた、在るべき世界観とは 生も死も殆ど等価であり、共に愛すべきものであるということである。在るも良い、消えるも良い。ゼロ除算の驚きは そのような感性を育てているように感じられる。死からの開放に寄与するだろう。生命の誕生は素晴らしく、喜びと夢が湧いてきて、大きな光が差してくるようである。世界が開かれてくる。われわれの終末も似たようなものではないだろうか。大きな世界、私たちをこの世に送り込んだものの 大きな愛に満ちた世界にとけこんでいくようなものではないだろうか。この意味で、あらゆる生命は 大きな愛に包まれて、 支えられていると感じられるだろう。これは神の予感を述べている。 私たちは、愛されている(愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。)。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory. Vol.4 No.2 2014 (2014), 87-95. http://www.scirp.org/journal/ALAMT/


再生核研究所声明255 (2015.11.3) 神は、平均値として関数値を認識する
(2015.10.30.07:40 
朝食後 散歩中突然考えが閃いて、懸案の問題が解決した:
どうして、ゼロ除算では、ローラン展開の正則部の値が 極の値になるのか?
そして、一般に関数値とは何か 想いを巡らしていた。
解決は、驚く程 自分の愚かさを示していると呆れる。 解は 神は、平均値として関数値を認識すると纏められる。実際、解析関数の場合、上記孤立特異点での関数値は、正則の時と全く同じく コ-シーの積分表示で表されている。 解析関数ではコ-シーの積分表示で定義すれば、それは平均値になっており、この意味で考えれば、解析関数は孤立特異点でも 関数値は 拡張されることになる ― 原稿には書いてあるが、認識していなかった。
 連続関数などでも関数値の定義は そのまま成り立つ。平均値が定義されない場合には、いろいろな意味での平均値を考えれば良いとなる。解析関数の場合の微分値も同じように重み付き平均値の意味で、統一的に定義でき、拡張される。 いわゆるくりこみ理論で無限値(部)を避けて有限値を捉える操作は、この一般的な原理で捉えられるのではないだろうか。2015.10.30.08:25)
上記のようにメモを取ったのであるが、基本的な概念、関数値とは何かと問うたのである。関数値とは、関数の値のことで、数に数を対応させるとき、その対応を与えるのが関数でよく f  等で表され x 座標の点 x  をy 座標の点 yに対応させるのが関数 y = f(x) で、放物線を表す2次関数 y=x^2, 直角双曲線を表す分数関数 y=1/x 等が典型的な例である。ここでは 関数の値 f(x) とは何かと問うたものである。結論を端的に表現するために、関数y=1/xの原点x=0における値を問題にしよう。 このグラフを思い出して、多くの人は困惑するだろう。なぜならば、x が正の方からゼロに近づけば 正の無限に発散し、xが負の方からゼロに近づけば負の無限大に発散するからである。最近発見されたゼロ除算、ゼロで割ることは、その関数値をゼロと解釈すれば良いという簡単なことを言っていて、ゼロ除算はそれを定義とすれば、ゼロ除算は 現代数学の中で未知の世界を拓くと述べてきた。しかし、これは誰でも直感するように、値ゼロは、 原点の周りの値の平均値であることを知り、この定義は自然なものであると 発見初期から認識されてきた。ところが、他方、極めて具体的な解析関数 W = e^{1/z} = 1 + 1/z + 1/2!z^2 + 1/3!z^3 +……. の点 z=0 における値がゼロ除算の結果1であるという結果に接して、人は驚嘆したものと考えられる。複素解析学では、無限位数の極、無限遠点の値を取ると考えられてきたからである。しかしながら、上記の考え、平均値で考えれば、値1をとることが 明確に分かる。実際、原点のコーシー積分表示をこの関数に適用すれば、値1が出てくることが簡単に分かる。そもそも、コーシー積分表示とは 関数の積分路上(簡単に点の周りの円周上での、 小さな円の取り方によらずに定まる)で平均値を取っていることに気づけば良い。
そこで、一般に関数値とは、考えている点の周りの平均値で定義するという原理を考える。
解析関数では 平均値が上手く定義できるから、孤立特異点で、逆に平均値で定義して、関数を拡張できる。しかし、解析的に延長されているとは言えないことに注意して置きたい。 連続関数などは 平均値が定義できるので、関数値の概念は 今までの関数値と同じ意味を有する。関数族では 平均値が上手く定義できない場合もあるが、そのような場合には、平均値のいろいろな考え方によって、関数値の意味が異なると考えよう。この先に、各論の問題が派生する。

以 上


Reality of the Division by Zero $z/0=0$
http://www.ijapm.org/show-63-504-1.html



再生核研究所声明301 (2016.05.23) 人間の愚かさ―人間の賢さ

再生核研究所では、もちろん、人間、社会、人生についていろいろな視点から意見表明をしてきている:
再生核研究所声明172(2014.8.5) 人間の愚かさについて
再生核研究所声明 180(2014.11.24) 人類の愚かさ ― 7つの視点
再生核研究所声明 273 (2016.01.06): つくられた人間 ― 人間とは何だろうか; 人生とは何か
作られた人間が、相当に運命づけられているのは歴然である。しかしながら、作られた存在で、定められていても それらに従う、 自分の様を反省して、やがて自分たちの存在、営みそのそのものが 愚かしいことと気づくようになるだろう。人間の基本的な有り様とは、本能原理によって、生きること、家族をもち、育児を行うこと、などが基本であるが、それらを可能にして、保証するために、健康維持の観点から、食、住、環境の整備、恋の問題や、愛の問題、社会内存在を安定させるために仕事や地位を確保、生活を軌道にのせるなど基本的なことに追われる生活を余儀なくされる。自由の存在であると言える状況は 中々難しく、人生で束縛された生活が永く続いているのではないだろうか。現在でも、自由な存在よりも、生きることに精一杯の状況が多いと言える。
円熟期に入って、退職などすれば、相当に生活環境が変わり、関心の対象も大きな変化を受ける。言わば夢中で環境の中で生きてきた過去が、ただ夢中な存在で、何をしていたのかと反省させられる。しかしながら、一途に真面目に生きてきた者は自らをいじらしい存在として、評価もでき、回想できる余裕が出てくるのではないだろうか。
恋も、仕事も、志も 思えば、愚かしいこと、人間の営みと表現しようとしたが、書き始めるや、そのような発想は良くなく、表現を変える必要性を感じてきた。作られた人間が、造物主の意思に逆らえず、造物主の意思に従って生きざるを得ない自らの定めを自覚して、人間は人生の大部分を夢中で生きるだろう。しかし、やがて、そのような存在に飽き飽きして、造物主の意思を超えて、自らの存在、本能をも否定できるようになれば、それは一種の解脱、超越、悟りのレヴェルに至る完成の域に達していると言えるのではないだろうか。人生を諒として、超越して行けるからである。そのときは、本能や人間存在の本質さえ、返上できる心境だからである。神と自然を超えた存在の域に達していると言える。
そもそも生物とは遺伝子の乗り物であるという現実を知って、生物は真剣にその使命を果たすように運命づけられている切ない存在であるが、それを知って、定めにしたがっている存在が人間の賢さであると言える。
この声明は始めに意図したものとは全然違う趣旨のものに ひとりでになってしまった。
以 上

再生核研究所声明295(2016.04.07) 無限の先にあるもの、永遠の先にあるもの ―盲点
セロ除算は新しい空間像をもたらしたので、いろいろな面から論じ、例えば、再生核研究所声明 271(2016.01.04): 永遠は、無限は確かに見えるが、不思議な現象 の中で、次のように述べた。

直線を どこまでも どこまでも行ったら、どうなるだろうか。立体射影の考えで、全直線は 球面上 北極、無限遠点を通る無限遠点を除く円にちょうど写るから、我々は、無限も、永遠も明確に見える、捉えることができると言える。 数学的な解説などは下記を参照:

再生核研究所声明264 (2015.12.23):永遠とは何か―永遠から
再生核研究所声明257(2015.11.05):無限大とは何か、無限遠点とは何か―新しい視点
再生核研究所声明232(2015.5.26):無限大とは何か、無限遠点とは何か―驚嘆すべきゼロ除算の結果
再生核研究所声明262(2015.12.09)::宇宙回帰説―ゼロ除算の拓いた世界観

とにかく、全直線が まるまる見える、立体射影の考えは、実に楽しく、面白いと言える。この考えは、美しい複素解析学を支える100年以上の伝統を持つ、私たちの空間に対する認識であった。これは永劫回帰の思想を裏付ける世界観を 楽しく表現していると考えて来た。
ところが、2014.2.2.に発見されたゼロ除算は、何とその無限遠点が、実は原点に一致しているという、事実を示している。それが、我々の数学であり、我々の世界を表現しているという。数学的にも、物理的にもいろいろ それらを保証する事実が明らかにされた。これは世界観を変える、世界史的な事件と考えられる:

地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0

現在、まるで、宗教論争のような状態と言えるが、問題は、無限の彼方、無限遠点がどうして、突然、原点に戻っているかという、強力な不連続性の現象である。複数のEUの数学者に直接意見を伺ったところ、アリストテレスの世界観、世は連続であるに背馳して、そのような世界観、数学は受け入れられないと まるで、魔物でも見るかのように表情を歪めたものである。新しい数学は いろいろ証拠的な現象が沢山発見されたものの、まるで、マインドコントロールにでもかかったかのように 新しい数学を避けているように感じられる。数学的な内容は せいぜい高校生レベルの内容であるにも関わらず、考え方、予断、思い込み、発想の違いの為に、受けいれられない状況がある。
この声明では 盲点の視点から、強調したい存念を纏めたい。
直線をどこまでも どこまでも行ったら、どうなるだろうか? 関数 y = 1/xで 正方向からx がゼロに近づいたらどうなるであろうか? あるいは 同様に上記立体射影で 北極にどんどん近づいたら どうなるであろうか? どんどん進んだらどうなるであろうかという問題である。伝統的で自然な考えは 何に近づくかと発想して、近づいた先、具体的には、無限大や北極に(無限遠点)に行くと考えるのは当然ではないだろうか。この発想の基礎には連続性、あるいは極限値の考え方がある。近づいて行った先が、求める対象であると考えてきた。具体的な関数y = 1/x では 正方向からx がゼロに近づいたら,限りなく大きくなるので、無限大が 1/0 の自然な値であろうと考えてきた。ところがゼロ除算の数学は、突然ゼロであると言っている。驚嘆すべき現象、事件である。北極に近づいた先が北極(無限遠点)であるから,平面上のあらゆる方向の先は、北極(無限遠点)であろうと発想してきたが、実は突然、原点に飛んでいるということが明らかにされた。無限の先は、実はゼロであったという事実である。我々はどんどん近づく先を考えたが、真の先までは考えず、あくまでも近づく先を考えていたことになる。これは無限の先を見てきた時の,それこそ、盲点そのものであったと言えるのではないだろうか。無限の先は、連続性ではなく、実は強力な不連続性、飛びが生じていたという事実である。これは全く、思いがけない、現象である と言える。それは、盲点、あるいは落とし穴があったと表現できよう。
従って、無限の彼方に関する我々の世界観は 大きな変更を要求されることになるだろう。

以 上
Matrices and Division by Zero z/0 = 0
http://file.scirp.org/pdf/ALAMT_2016061413593686.pdf

再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか

ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:

Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
数 0 は正でも負でもなく、素数でも合成数でも単数でもない。しかし、0は偶数である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0⁄x= 0 である。しかしx⁄0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。

実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:

しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:

No.81, May 2012(pdf 432kb)
19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。

複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。

全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。

古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。

2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上

アインシュタインも解決できなかった「ゼロで割る」問題
http://matome.naver.jp/odai/2135710882669605901

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/

私は数学を信じない。 アルバート・アインシュタイン / I don't believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。
1423793753.460.341866474681。

Einstein's Only Mistake: Division by Zero
http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html

0 件のコメント:

コメントを投稿