2016年8月31日水曜日

和算の始まり―そろばん伝来

NEW !
テーマ:

第1章 江戸時代初期

江戸時代は、1603年から1867年までのおよそ270年間をいいます。この間、偶然ではありますが、日本独自の数学である和算が江戸時代初頭に成立し、明治になった直後に西洋数学に置き換わります。和算の歴史はすなわち江戸時代の歴史と完全に一致した期間にまたがっていたのです。
最初に江戸時代初頭、すなわち1600年代から1660年代ぐらいまでの和算の状況を説明します。

(1) 和算の始まり―そろばん伝来―

江戸時代以前の数学については、ほとんど史料が残っていないことから、概要程度のことしかわかりません。日常的な計算術(四則演算)を、そろばんが伝来する以前の計算道具である算木によって運算していたことが知られています。このそろばんが日本に伝来したことから、日本の江戸時代の数学の歴史は始まります。
そろばんは日本で発明されたものではありません。中国大陸のどこかで、諸説ありますが、14世紀前後に発明されました。それが瞬く間に中国大陸で普及し、海を越えた日本にも伝来していきます。日中を行き来した貿易商人たちがその仲介に大きな役割を果たしたものと想像されます。1590年代に刊行された『日葡辞書』には"Soroban"という項目があり、計算道具としての記述がまとめられています。この頃には国内に流通し始めていたことがわかります。
そろばんは当時としては非常に簡便な計算道具でした。それ以前の算木に比べると、手の上で弾いて計算することができ、迅速でした。貿易の現場では重宝されたでしょうし、野外での測量や土木工事などでも威力を発揮したはずです。江戸時代初期に築城の現場を描いたとされる屏風絵(名古屋市博物館所蔵「築城図屏風」)には、そろばんを弾いている人物が描写されています。いわゆる鎖国以前の日本における海外貿易関係者、土木工事や開墾にあたった人々に必需品となったのがこのそろばんでした。
1650年代に記された河内国(現在の大阪府)の人の日記では、自分たちの世代はそろばんを使っているが、古老たちは算木で計算をしていたらしい、これは全く想像できない、という趣旨のことを述べています(『河内屋可正旧記』)。つまり、一世代ぐらいの間にそろばんの知識は日本社会に広く浸透していたことがうかがえるのです。算木と盤

(2) 『塵劫記』以後―四則演算から高度な数学まで―

このそろばんの知識の普及に大きく貢献したのが、そろばんのマニュアルとして刊行された吉田光由(1598-1673)の『塵劫記』(1627年初版)でした。著者の吉田は京都の豪商・角倉一族の出自で、そろばんを若い頃から学んでいたと述べています。『塵劫記』にはそろばんによる四則演算の計算法の他に、田畑の面積計算、簡単な測量術の方法といった実用重視の内容がまとめられていると共に、継子立てやねずみ算といった数学遊戯のような問題まで幅広く収録していたために、好評を博しました。吉田の死後も『塵劫記』の類似本が数多く刊行され、江戸時代の日本人に初等的な算術知識の基礎を与えました。折しも、徳川幕府による治世は安定し、国内では農地開発を伴う土木事業が各地で行われました。そのような事業を監督する役人層としては、従来のように槍や刀で武功を挙げて出世するのではなく、民政を担当することで頭角を現す新しいタイプの侍身分が期待されました。各地でそのような能力を持った人物が登用され、中には数学書を刊行する人々も現れました。江戸時代初期、磐城平藩に採用された今村知商は『豎亥録』の著者として知られますが、民政担当の郡奉行を務めました。会津藩の安藤有益(1624-1708)もそのような数学者の一人でした。
吉田の『塵劫記』は実用的な問題の解法を日本人に示しただけではなく、当時の数学好きの興味関心をも掘り起こす役割を担いました。その中でパズルのようにして出題された問題(遺題)は読者の知的好奇心を喚起し、『塵劫記』に続けとばかりに、新しいタイプの問題が競うようにして後発する書籍の中に紹介されました。『童介抄』、『算法闕疑抄』、『古今算法記』といった算数書に数多くの難問が収録されるようになりました。『塵劫記』のようにそろばんの四則演算だけで解けるような問題ではなく、それよりも遥かに高度な、現代ならば代数の方程式を扱わねば解けないような問題がそれらの書の中で提示されました。
例えていえば、『塵劫記』の教える四則演算は小学校の算数を集大成したような内容で、その後に提示された遺題の難問は、高校・大学初年級レベルの数学の問題にも相当しました。全く質的に異なる数学が必要となったのですが、当時の日本には、それに対応するための手立てが実はありませんでした。
しかし、幸運なことに、『算学啓蒙』という13世紀末に中国で刊行された数学書が江戸時代の日本に伝来していたことが知られるようになり、そこに紹介されていた一つの数学の技法「天元術」が注目を集めることになりました。この天元術とは、現代数学の言葉でいえば、算木を用いて2次方程式や3次方程式を立てるテクニックのことになります。これを活用できれば、当時の数学の難問にはかなりの程度応用が利きました。『算学啓蒙』の天元術に関する記述はごく僅かでしたが、『古今算法記』(1671年)の著者・沢口一之などといった和算家は、この術をよく理解し、解答に応用していました。他にも、福岡藩の学者で貝原益軒(1630-1714)の弟子としても知られる竹田定直といった人も『算学啓蒙』を深く探究しました。この天元術を日本風にアレンジしてさらに応用の道を広げたのが、和算家としては有名な関孝和(?-1708)ですが、彼については次章で述べます。http://www.ndl.go.jp/math/s1/1.html

和算はゼロ除算はやっていない:

再生核研究所声明316(2016.08.19) ゼロ除算における誤解
(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)

6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

以 上

再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか
ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:

Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
数 0 は正でも負でもなく、素数でも合成数でも単数でもない。しかし、0は偶数である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0x= 0 である。しかしx0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。

実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:

しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:

19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。

複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。

全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。

古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。

2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上

再生核研究所声明310(2016.06.29) ゼロ除算の自明さについて
人間の感性の観点から、ゼロ除算の自明さについて触れて置きたい。ゼロ除算の発見は誠に奇妙な事件である。まずは、近似の方法から自然に導かれた結果であるが、結果が全然予想されたことのない、とんでもないことであったので、これは何だと衝撃を受け、相当にその衝撃は続いた。まずは、数学的な論理に間違いがないか、厳重に点検を行い、それでも信じられなかったので、多くの友人、知人に意見を求めた。高橋眞映山形大学名誉教授のゼロ除算の一意性定理は大事だったので、特に厳重に検討した。多くの友人も厳重に時間をかけて検討した経過がよく思い出される。その他、いろいろな導入が発見されても、信じられない心境は1年を超えて続いたと言える。数学的に厳格に、論理的に確立しても 心情的に受け入れられない感情 が永く続いた。そのような心境を相当な人たちが抱いたことが国際的な交流でも良く分かる。中々受け入れらない、ゼロ除算の結果はそうだと受け入れられない、認められない空気であった。ゼロ除算の発展は世界史上の事件であるから、経過など出来るだけ記録するように努めてきた。
要するに、世界中の教科書、学術書、定説と全く違う結果が 世に現れたのである。慎重に、慎重に畏れを抱いて研究を進めたのは 当然である。
そこで、証拠のような具体例の発見に努めた。明確な確信を抱くために沢山の例を発見することとした。最初の2,3件の発見が特に難しかった。内容は次の論文に、招待され、出版された: http://www.ijapm.org/show-63-504-1.html :
ゼロ除算を含む、山田体の発見、
原点の鏡像が(原点に中心をもつ円に関する)無限遠点でなく ゼロであること、
x,y直角座標系で y軸の勾配がゼロであること、
同軸2輪回転からの、ゼロ除算の物理的な意味付け、

これらの成果を日本数学会代数学分科会で発表し、また、ゼロ除算の解説(2015.1.14)を1000部印刷広く配布してきた。2年間の時間の経過とともに我々の数学として、実在感が確立してきた。その後、広範にゼロ除算がいろいろなところに現れていることが沢山発見され、やがて、ゼロ除算は自明であり数学の初歩的な欠落部分であるとの確信を深めるようになってきている。
単に数学の理論だけでなく、いろいろな具体例が認識の有り様を、感性を変えることが分かる。そこで、何もかも分かったという心境に至るには、素朴な具体例で、何もかも当たり前であるという心理状況に至ることが大事であるが、それは、環境で心自体が変わる様をしめしている。本来1つの論文であった原稿は 招待されたため次の2つの論文に出版される:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra
& Matrix Theory, 6, 51-58.
Division by Zero z/0 = 0 in Euclidean Spaces:
International Journal of Mathematics and Computation 9 Vol. 28; Issue  1, 2017)

沢山の具体例が述べられていて、ゼロ除算が基本的な数学であることは、既に確立していると考えられる。沢山の具体例が、そのような心境に至らしめている。
ゼロ除算の自明さを論理ではなく、簡単に 直感的な説明として述べたい。
基本的な関数y=1/xを考え、そのグラフを見よう。原点の値は考えないとしているが、考えるとすれば、値は何だろうか? ゼロではないか と 思えば、ゼロ除算は正解である。それで十分である。その定義から、応用や意味付けを検討すれば良い。― 誰でも値は ゼロであると考えるのではないだろうか。中心だから、真ん中だから。あるいは平均値だからと考えるのではないだろうか。それで良い。
0/0=0 には違う説明が必要である。条件付き確率を考えよう。 A が起きたという条件の下で、B が起きる条件付き確率を考えよう。 その確率P(B|A) は AとBの共通事象ABの確率P(AB) と A が起きる確率P(A)との比 P(B|A)=P(AB)/P(A) で与えられる。もし、Aが起きなければ、すなわち、P(A) =0 ならば、もちろん、P(AB) =0. 意味を考えても分かるようにその時当然、P(B|A) =0である。 すなわち、0/0=0は 当たり前である。

以 上

再生核研究所声明313(2016.08.01)  良い数学教育の推進を

最近の世情は良いとは言えない。各地に続発するテロの発生、誹謗、中傷合戦の選挙戦、嫌いな者に対する殺傷事件、自己中心的な対外批判の高まりなど、など。これを大局的に見れば、人類未だ生物レベルを越えておらず依然として、万人の万人に対する争いの混沌たる状況にあると言える。これは、生命の共感、共生、哀しい定めを説かれたお釈迦様の教えも未だ実現できない野蛮な歴史を続けていると見られる。
そもそも、再生核研究所声明は、より良い社会を目指して、どのようにすれば美しい社会を築けるかと志向して、公正の原則を掲げて始められた:

再生核研究所声明 1 (2007/1/27): 美しい社会はどうしたら、できるか、 
美しい社会とは

最近の世相として、不景気・政界・財界・官界・大学の不振、教育の混迷、さらにニューヨークのテロ事件、アフガン紛争、パレスチナ問題と心痛めることが多いことです.どうしたら美しい社会を築けるでしょうか。
一年半も前に纏めた次の手記はそれらのすべての解決の基礎になると思いますが、如何でしょうか。

平成12年9月21日早朝、公正とは何かについて次のような考えがひらめいて目を覚ました。

1) 法律、規則、慣習、約束に合っているか。
2) 逆の立場に立ってみてそれは受け入れられるか。
3) それはみんなに受け入れられるか。 
4) それは安定的に実現可能か。

これらの「公正の判定条件」の視点から一つの行為を確認して諒となれば、それは公正といえる。

現在、社会の規範が混乱し、不透明になっているように思うが、公正の原則を確認して、行動していけば ―― これは容易なことではないが ―― 世の中ははるかに明るくなり、多くの混乱は少なくなると思いますが如何でしょうか。― 以下略。

これは 大事な原理になると考える。― 我々の存在を批判、否定するならば、我々は逆にあなたの存在が良いとは考えず、我々はあなたを批判し、応分に反撃するだろう。これは道理である。作用と反作用のようなものである。国防と安全のために国防軍を増長すれば、相手国がさらに軍備を拡充するのも道理である。
ここでは、上記お釈迦様の教えではなくて、数学の教育を通して、良い社会を築く基礎を広範に確立したいという考えを纏めたい。提案したい。
国際社会の秩序を整えるには、共通の言語と基礎が必要である。民族がバラバラの言語と異なる文化基盤を持てば、国際的な秩序の確立は困難で、秩序の確立には力や資金に頼らざるを得ないとなりかねない。今でも力、暴力が頼れると間違った考えが万延していると言える。
世の秩序の根幹は 世には道理というものがある人々はその道理に従うべきだとなれば、
国際的に強力な基礎ができると考えられる。世の道理である。我々は有史以来、本質的に変更されたことのない数学、ユークリッド幾何学に人類共通の言語を見出すことができるだろう。数学はさらに人類も越えた、universeの、世の秩序を美しく表現している(――数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:

www.jams.or.jp/kaiho/kaiho-81.pdf
19/03/2012 - ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。

簡潔に述べれば、数学は 時間にも、エネルギーにもよらずに存在する神秘的な 関係の論理体系であるが、ユニバースは 数学を言語として構成されているという、信仰のような信念を抱いている。基本的な数学はユニバースの基本的な様を表現しているのではないだろうか。)

数学を通して、人類が交流でき、世には道理、秩序が 存在すると理解できるだろう。分かり易いスポーツを通して、ドラマを見て、芸術を通して理解するは 世に多いが、数学の効用をここでは強調したい。道理、秩序に対する認識には 数学の効用は大きく、上記 公正の原則の理解にも 大きく寄与するのではないだろうか。数学教育の充実を国際的な視点で提案したい。
その留意点を纏めて置きたい:
1) 世には共通の論理があることを理解し、論理的な思考を学習する。
2) 数学の論理的な面には、美しさとuniverseの、世の秩序を述べていることを学ぶ。
3) 非ユークリッド幾何学の出現過程を良く学び、真理を追求する精神感情と論理の関係を学ぶ。批判精神、理性、客観性について学ぶ。予断と偏見、思い込み、囚われやすい人間の精神を掘り下げる。
ここで、数学教育の充実とは、いわゆる数学の学力、問題解決に重点を置いた従来の学習ではなく、上記のような数学教育をとうして身に付く数学の精神に重点を置いた教育である。数学の学力を付けることに偏りすぎたり、学力を競争させたりして 世に多くの数学嫌いな人たちを育てていることを大いに反省したい。数学の美しさ、楽しさを教えることが第一であると心がけなければならない。
数学愛好者の増大は かつて和算が広く民衆に普及していたように、環境にも優しく、人間の修行にも、精神衛生上も、また創造性を養い、考える力を育成するにも大いに貢献するのではないだろうか。囲碁や将棋、歌会、俳句会など良い趣味集団を構成しているが、数学愛好者クラブなど大いに進められるべきではないだろうか。新聞やテレビ、マスコミ、週刊誌などでもどんどん話題を取り上げ、また奨励されるべきではないだろうか。社会の浄化と低俗化防止にも貢献するのではないだろうか。
念のため次を付記するが、数学愛好者は好感を持たれる存在と言えるのではないだろうか:

再生核研究所声明285(2016.02.10)  数学者の性格、素性について
以 上

0 件のコメント:

コメントを投稿