2015年12月8日火曜日

地球の形 今昔

地球の形 今昔 - 球形の地球

古代の人たちは,大地は平面であると考えていたようである.地球が丸いと考えられるようになったのは古代ギリシャのピタゴラス(紀元前582-493?)とその学派の人たちであったとされている.彼らは,数学こそが自然を支配するものであると考えており,数学的に最も完全な形である球がこの大地の形にふさわしいと考えた.これは,陸から離れた海上から陸を見たとき,ある程度の高さ以上の場所のみが見え,海岸線付近は見えないことから考えついたものだと思われる.その後,アリストテレス(紀元前384-322)は,月食の影が丸い,南北に移動すると見える星が変化するということを地球が丸いことの根拠としてあげている.
アレクサンドリアの図書館長であったエラトステネス(紀元前275-195)は,図書館の書物から,アレクサンドリアの南のシエネ(現在のアスワン)に,夏至の正午にだけ水面まで太陽の光が届く深井戸があることを知り,これをきっかけに地球の大きさを求めた.彼は,夏至の正午のアレクサンドリアでの太陽の高度を7.2°であると求めるとともに,アレクサンドリアとシエネの距離を隊商が移動するのに要する日数から5000スタジア(約920km)と求めた.アレクサンドリアとシエネは同じ経度上にあるとすると,地球一周の長さはとなる.この値は実際の地球の大きさに比べ,わずか15%ほど大きいだけで,当時の技術水準から考えて驚異的な正確さであったと評価され,エラトステネスは測地学の父と呼ばれている.http://www.geod.jpn.org/web-text/part3_2005/satomura/satomura-1.html

地球の形 今昔 - 楕円体の地球

17世紀の後半になり,パリ天文台のリシェーが天体観測のため南米フランス領ギアナのカイエンヌ(北緯5°)に行ったところ,バリ(北緯49°)で調整した振り子時計が1日に2分28秒遅れた.また,カイエンヌで調整した時計をパリに持ち帰ると,今度は1日に2分28秒進んだ.ニュートンは,これは,カイエンヌの重力がパリより小さいためであるとした.重力の差は


程度であるのに対し,地球自転の遠心力の重力に及ぼす影響は


であり,その差1.4×10-2ms-2だけ,カイエンヌの方がパリより地球の引力が小さいことになる.これは,地球が極半径より赤道半径の方が長い楕円体(oblate)であることを意味する.さらにニュートンは,1687年に出版した「プリンキピア」の中で,地球と同じ大きさで一様な密度を持つ球が1日に1回自転しているときに引力と遠心力が釣り合う形を計算から求めた.その結果,扁平率f =(a -b )/a が1/230となった.また,1690年に,ホイヘンスは地球の質量が中心に集中していると仮定したときの地球の釣り合いの形を求め,扁平率f =1/578を得た.これらの結果は,すべて地球がoblateであることを示している.
ところが,カッシーニ父子が,フランス国内での測量結果を基に子午線弧長を求めたところ,低緯度の方が高緯度より長くなった.この結果は,地球が赤道半径より極半径の方が長い楕円体(prolate)であることを意味する.そのため,地球の形はoblateかprolateであるのかが大問題になった.この問題に決着をつけるため,フランス王立科学学士院は,スカンジナビア半島北部のラップランドと赤道直下のペルーに測量隊を派遣して,それぞれの子午線弧長を求めた.その結果は,高緯度地方の方が低緯度地方より子午線弧長が長く,地球の形はoblateであることが判明した.18世紀の中ごろのことである.

http://www.geod.jpn.org/web-text/part3_2005/satomura/satomura-2.html


地球の形 今昔 - 西洋梨型の地球

1957年10月5日,ソ連は人類史上初の人工衛星打ち上げに成功した.翌年1月にはアメリカも人工衛星を打ち上げた.これら人工衛星は,地球が球対称であると仮定すると,ケプラーの法則にしたがって地球の重心を1つの焦点とする楕円軌道を描く.この軌道は,軌道の楕円の長半径とその離心率,近地点の方向(近地点引数),赤道面に対する傾斜角,赤道面との交点(昇交点)の経度,そしてある位置を通過する時刻(近地点通過時刻)の合計6つの量で表される.しかし,地球は赤道部が膨らんだ楕円体で,しかも空気の抵抗もあるため,完全な楕円軌道にはならない.地球が楕円体であれば,近地点や昇交点の経度が変化する.
1958年3月に打ち上げられたバンガード1号という人工衛星をNASAがミニトラックという干渉計で追跡していたところ,近地点の高さが周期的に変動していることが発見された.このような変動は地球が赤道面に対して対称であれば起こらないことである.当時スミソニアン天文台に滞在していた古在由秀は,この軌道の変化を元に地球の形,つまりジオイドの形が図3に示すように北極が南極よりも40m強飛び出ていることを見いだした.これが西洋梨型と言われる地球の形である.
その後,様々な軌道をもつ人工衛星が打ち上げられるとともに,ジオイドと人工衛星の軌道変化の関係式も確立され,より詳しいジオイドの形が,人工衛星の軌道から求められるようになった.

(里村幹夫)http://www.geod.jpn.org/web-text/part3_2005/satomura/satomura-3.html


再生核研究所声明251(2015.10.27) 円と曲率 ―ゼロ除算z/0=0から導かれる道脇裕氏の解釈
(再生核研究所は ゼロ除算の研究を推進している。特に研究は初期段階にあるので ゼロ除算の実在感の観点からの考察を進めている。そのような折り、道脇裕氏が2015.9.3. 付け文書を送って来たので、要点を纏めて置きたい。)

底円の半径がr_2である直円錐を考える。 それを半径r_1 の底円に平行な円で切る。2つの円板の間の距離をdとする。 このとき、直円錐の頂点と底円板の間の 直円錐の表面上での 距離RはEM半径と呼ばれ、道脇愛羽(8歳)さん が計算され、

R=r_2/(r_2-r_1 ) √(d^2+(r_2-r_1 )^2 )

となる。これは2つの円板で囲まれた部分の 平面上での回転を考えたときに、底円が描く円の半径を計算されたものである。
半径Rの円の曲率はK=K(R)=1/Rで定義される。いま、r_1 がr_2 に近づいた場合を考える。もちろん、d を一定にしてである。まず、極限値を考えれば、Rは無限大に発散して、底円が描く円は 直線に近づき、実際、r_1 = r_2の時は 底円が描く円は直線になり、回転体は直線運動を行うことが分かる。
ところがゼロ除算は、r_1 =r_2のとき、Rがゼロであることを言っているが、それは、何を意味するだろうか。ゼロ除算は K=K(R)=1/R がR=0 でゼロと言っているから、その時の曲率がゼロ、すなわち、極限の場合と同様に、底円が描く円は直線になり、回転体は直線運動を行うことを述べている。
いまの場合、極限で考えた極限値とゼロ除算、すなわち、R=0自身の結果が同じことを述べている。
この現象は、ゼロ除算が現実の現象を良く表現しているものと考えられる。

同時に、半径ゼロの円(点)の曲率がゼロである ことをよく、表している。
上記、回転体の運動の例は、ゼロ除算の強力な不連続性をよく捉えたものとして、大変面白いのではないだろうか。

以 上

再生核研究所声明249(2015.10.20)数とは何か ― ゼロ除算z/0=0を含む
(数とは、ゼロ除算z/0=0を含む 山田正人 体の元のことである:
2015.10.16.07:30 小雨の中、興奮しながら散歩していた。 その時、 上記のような直観が確信をもって、熱く閃いた。複素数体に対して、山田体を広く用いるべきである。 そこでは、例外なく逆数が定義され、言わば完備化空間のように完全になり、ゼロ除算の世界が拓かれてくる。
2015.10.16.08:12)

ゼロ除算z/0=0は 分数の自然な拡張として既に1+1=2のように自明であり、しかもそれは、我々の数学そのものであり、自然現象もきちんと表している。しかしながら、永い間の偏見の世界史、それも千年を超える偏見であり、天才的な数学者たちの足跡を省みて、中々世の中で理解されない状況があるのは、世の関係サイトを見ても良く分かる。それらには、そもそもゼロに対する恐怖心とゼロ除算にからむ、不可思議で奇妙な論調を見ることができる。
ゼロ除算のこのような歴史は、やがて人類の愚かさの象徴であると世界史で記録されるだろう。
1/0 とは何だと、恐怖心を抱く者は 尚世に多い状態と言える。公理論的に吟味したか、現代数学とは違う、変な世界の数学ではないか、数学的に正しくともそのような変な数学が大きな意味を持つはずがない等と 特に優秀な人たちが述べて来たのは大変興味深い事実である。
最近、数学基礎論、公理論、計算機科学の専門家たちのゼロ除算に関する論文を発見した
Meadows and the equational specification of division
J A Bergstra,Y Hirshfeld and J V Tucker
が、結論ではとにかく、奇妙なことが書かれている(arXiv:0901.0823v1[math.RA] 7 Jan 2009)。
文献を見れば、彼らが相当な専門家であることが分かる。― 上記は要するにゼロ除算を含むいろいろな公理系を建設できるが、幻のようであるが計算に役立つと言っているようである。 きちんと書かれているのは、ゼロ除算が可能であるとは 主張しない ということである。
しかるに、我々はゼロ除算が可能であり、ゼロ除算は我々の数学そのものであると言っている。我々の本質的な原理は、ゼロ除算z/0=0は定義そのものであり、そのように定義し、導入することによって、数学は完全になり、新しい世界を拓くと言っている。いろいろな証拠を挙げて、解説してきた。
しかしながら、それでもなお、1/0 とは何ものかという、思いが残っているかも知れない。 それは数と言えるのだろうかなどの雑念が残っているかも知れない。
このような折り、2015.10.3.山田正人氏が研究室を訪れ、上記の論文とともに氏の考えを夢中で討論した。そのときは、2人ともそんなには気にしなかったのであるが、山田氏は、ゼロ除算を含む 体の構造を入れる方法を説明された。 体とは、四則演算が自由にできる 数学の述語で、 言わば数の資格もつ性質を表している。こうなると、ゼロ除算z/0は代数的にも堂々と数であると言明できることになる。
念を押したいのは、ゼロ除算z/0=0とは定義そのものであり、その定義で、全ての理論は現代数学の中で、新しい世界を展開できるということである。
実際、山田氏の上記の理論から、新しい結果は、何一つ得られない、数学の内容としては自明なものばかりである。
しかしながら、引用された上記論文や、体の概念の重要性から、山田氏の発見された体は 極めて重要であり、数とは 山田氏の発見された体の元、そのものである と言える。
山田氏の発見された、体の構造とは簡単であるが、新規な面白い概念を含んでいるので、内容は 当分は未公開としたい。
極めて面白いのは、y軸の勾配がゼロであるという知見をゼロ除算の帰結として得ていたが、山田氏の上記の考えは、そのことの帰結を微妙な論理で同様に導いている事実である。山田氏の考えには新しい世界観があるのは確かであると言える。
以上


\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 247: The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$}

\author{{\it Institute of Reproducing Kernels}\\


\date{September 22, 2015}

\maketitle
In Announcement 246, we stated:

\medskip
Consider the lines $y = ax$ with gradients $a$ through the origin $ 0$. Consider the two limits that $a \quad (>0)$ tends to $ + \infty$ and $a \quad (<0)$ tends to $- \infty$, respectively. As their limits, we see that the limiting lines are $y$ — axis. Note that the gradient of the $y$ axis is zero, not infinity.
This example shows as in the graph of the function $y = f(x) = 1/x$ at $x = 0$ as $f(0) =0$, that was introduced by the division by zero $1/0=0$ mathematically (\cite{s,kmsy,ttk,ann}).
\medskip

For this announcement, Professor H. Begehr kindly referred to the gradient of the $y$ axis in the above: If the gradient of the imaginary axis is $0$ this would mean $\tan (\pi/2)=0$,
right? Of course this would be a consequence of $1/0=0$!
\medskip

We had sent the e-mail, soon as follows:
\medskip

For the gradient of $y$ axis, we can define it as zero, very naturally and in the intuitive sense; of course, we can give its definition precisely.
However, as you stated, we can derive it formally by the division by zero $1/0=0$; this deduction will be very interested in itself, because, the formal result $1/0=0$ is coincident with the natural sense.
\medskip

The gradients of y axis and x axis are both zero.
\medskip

Surprisingly enough, this would mean $\tan (\pi/2)=0$,
right?
THIS IS RIGHT for our sense; we gave the definition of the values for analytic functions at an isolated singular point:

\medskip
{\bf Theorem :} {\it Any analytic function takes a definite value at an isolated singular point }{\bf with a natural meaning.} The definite value is given by the first coefficient of the regular part in the Laurent expansion around the isolated singular point (\cite{ann}).
\medskip

As the fundamental results, we would like to state that

\medskip
{\huge \bf I) The gradient of the y axis is zero,}
\medskip

and
\medskip

{\huge \bf II) $\tan \frac{\pi}{2} = 0,$}
\medskip

in the sense of the division by zero in our sense.
\medskip

Note that the function $y = \tan x$ is similar with the function $y = 1/x$ around $x = \frac{\pi}{2}
$ and $ x = 0$, respectively.

\footnotesize
\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields, Tokyo Journal of Mathematics (in press).

\bibitem{ann}
Announcement 185: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.

\end{thebibliography}

\end{document}

再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点 
(道脇さんたちの、和算の伝統を感じさせるような、何とも 言えない魅力 がありますね。 添付のように完成させたい。例の専門家たち、驚いて対応を検討しているのでは?どんどん、事情がみえてきました. 今朝の疑問も きれいに散歩中 8時15分 ころ、解決できました.成文化したい。2015.11.1.9:7
無限遠点の値の意味を 約1年半ぶりに 神は関数値を平均値として認識する で 理解できました。今、気になるのは,どうして、正の無限 負の無限、および ゼロが近いのかです。その近いという意味を、 正確に理解できない。 近い事実は 添付する 電柱の左右の傾きに現れている。
log 0=0
と定義するのが 自然ですが、それには、 ゼロと マイナス無限大 が一致しているとも言える。 そのところが 不明、何か新しい概念、考え 哲学が 求められている???
2015.11.1.05:50)

ローラン展開の正則部の値の解釈のように(再生核研究所声明255 (2015.11.03) 神は、平均値として関数値を認識する)、実は当たり前だったのに、認識がおかしかったことに気づいたので、正確に表現したい。
まず、正の無限大とは何だろうか。 1,2,3,…… といけば、正の整数は 正の無限大に収束、あるいは発散すると表現するだろう。 この正確な意味は イプシロン、デルタ論法という表現で厳格に表現される。すなわち、 どんなに大きな 整数 n をとっても、あるN を取れば(存在して)、N より大の 全ての整数 m に対して、n < m が成り立つと定義できる。 いろいろな設定で、このようにして、無限は定義できる。 どんなに大きな数に対しても、より大の整数が存在する。 それでは、+∞ とは何だろうか。 限りなく大きな数の先を表す概念であることが分かる。 大事な視点は +∞は 定まった数ではなくて、極限で考えられたもので、近づいていく先を表した状況で考えられていることである。 これらの概念は極限の概念として、現代数学で厳格に定義され、その概念は新しいゼロ除算の世界でも、全て適切で、もちろん正しい。
簡単な具体例で説明しよう。 関数y=1/x のグラフはよく知られているように、正の実軸からゼロに近づけば、+∞に発散し、負からゼロに近づけば、-∞に発散する。 ところが、原点では、既に述べてきたように、その関数値はゼロである。 この状況を見て、0、+∞、-∞ らが近い、あるいは 一致していると誤解してはならない。+∞、-∞  らは数ではなく、どんどん大きくなる極限値や、どんどん小さくなる極限値を表しているのであって、それらの先、原点では突然にゼロにとんでいる 強力な不連続性を示しているのである。
複素解析における無限遠点も同様であって、立体射影で複素平面はリーマン球面に射影されるが、無限遠点とは あらゆる方向で原点から限りなく遠ざかった時に、想像上の点が存在するとして、その射影としてりーマン球面上の北極を対応させる。 関数W=1/z は原点でその点が対応すると、解析関数論では考え、原点で一位の極をとると表現してきた。
しかしながら、新しく発見されたゼロ除算では、1/0=0 であり 原点には、ゼロが対応すると言っている。 これは矛盾ではなくて、上記、一位の極とは、原点に近づけは、限りなく無限遠点に近づく、あるいは発散するという、従来の厳格議論はそのままであるが、ゼロ除算は、原点自身では、数としてゼロの値をきちんとして取っているということである。 この区別をきちんとすれば、従来の概念とゼロ除算はしっかりとした位置づけができる。 近づく値とそこにおける値の区別である。

以 上



再生核研究所声明202(2015.2.2)ゼロ除算100/0=0,0/0=0誕生1周年記念声明 ― ゼロ除算の現状と期待

ゼロ除算の発見、経過、解説などについては、結構な文献に記録されてきた:

再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9)ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25) Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185: The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1 ― 
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
再生核研究所声明199(2015.1.15)世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0

ゼロ除算100/0=0,0/0=0誕生1周年記念日に当たり、概観して共同研究者と共に夢を明るく 楽しく描きたい。まずは、ゼロ除算の意義を復習しておこう:

1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 ゼロで   何でも割れば ゼロ  z/0=0  である をもたらしたこと。
2)ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に 非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な結果は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる という定理 である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。

11)ゼロ除算が可能であるか否かの議論について:

現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。しかしながら、出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかという未知の分野が望めて、大いに期待できる世界が拓かれる。

12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界

ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として表していることである。

ゼロ除算は 既に数学的に確定され、その意義も既に明らかであると考えられるが、声明199にも述べられているように、ゼロ除算が不可能であるとの世の常識、学術書、数学は 数学者の勝手な解釈による歴史的な間違いに当たる ことをしっかりと理解させ、世の教育書、学術書の変更を求めていきたい。― 誰が、真実を知って、偽りを教え、言い続けられるだろうか。― 教育に於ける除算、乗算の演算の意味を 道脇方式で回復させ、新しい結果 ゼロ除算を世に知らしめ、世の常識とさせたい。それは ちょうど天動説が地動説に変わったように 世界史の確かな進化と言えるだろう。
ゼロ除算の研究の進展は、数学的には 佐藤超関数の理論からの展開、発展、 物理学的には ゼロ除算の物理法則の解釈や、衝突現象における山根の面白い解釈の究明 などに興味が持たれる。しかしながら、ゼロ除算の本質的な解明とは、Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の自然な現象として受け入れられることである。数学では、その強力な不連続性を自然なものとして説明され、解明されることが求められる。

以 上

ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269

ゼロ除算は、誰にもわかるが、みんな間違って理解している。
正しい結果は、驚嘆すべきもので、何でも0で割れば、0ということが最近発見された。

ゼロ除算は、不可能であると誰が最初に言ったのでしょうか・・・・

原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・
無限遠点は存在するが、無限大という数は存在しない・・・・

世界中で、ゼロ除算は 不可能か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算は いつでも可能で、解は いつでも0であるという意外な結果が得られた。

1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)


7歳の少女が、当たり前である(100/0=0、0/0=0)と言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。

小学校以上で、最も知られている基本的な数学の結果は何でしょうか・・・
ゼロ除算(100/0=0、1/0=0)かピタゴラスの定理(a2 + b2 = c2 )ではないでしょうか。
https://www.pinterest.com/pin/234468724326618408/

1+0=1 1ー0=0 1×0=0  では、1/0・・・・・・・・・幾つでしょうか。
0???  本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・

数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_

割り算を掛け算の逆だと定義した人は、誰でしょう???

multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。

0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。

加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849/a37209195?sort=1&fr=chie_my_notice_canso
http://www.mirun.sctv.jp/~suugaku/%E5%A0%AA%E3%82%89%E3%81%AA%E3%81%8F%E6%A5%BD%E3%81%97%E3%81%84%E6%95%B0%E5%AD%A615.5.htm

天動説・・・・・・∞
地動説・・・・・・0


何とゼロ除算は、可能になるだろうと April 12, 2011 に 公に 予想されていたことを 発見した。

多くの数学で できないが、できるようになってきた経緯から述べられたものである。


Dividing by Nothing
by Alberto Martinez
It is well known that you cannot divide a number by zero. Math teachers write, for example, 24 ÷ 0 = undefined.

After all, other operations that seemed impossible for centuries, such as subtracting a greater number from a lesser, or taking roots of negative numbers, are now common. In mathematics, sometimes the impossible becomes possible, often with good reason.

Posted April 12, 2011More Discoverhttps://notevenpast.org/dividing-nothing/
アラビア数字の伝来と洋算 - tcp-ip

http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf


地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0

地球人はどうして、ゼロ除算1300年以上もできなかったのか?  
2015.7.24.9:10 
意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 
生態系では、人類が がん細胞であった とならないとも 限らないのでは?

ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_


『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
地球平面説→地球球体説 地球が丸いと考えた最初の人-ピタゴラス
地球を球形であることを事実によって証明しようとした人-マゼラン
地球を球形と仮定して初めて地球の大きさを測定した人-エラトステネス
天動説→地動説:アリスタルコス=ずっとアリストテレスやプトレマイオスの説が支配的だったが、約2,000年後にコペルニクスが再び太陽中心説(地動説)を唱え、発展することとなった。https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AA%E3%82%B9%E3%82%BF%E3%83%AB%E3%82%B3%E3%82%B9 …
何年かかったでしょうか????

1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????


ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997


Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。

ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。

∞÷0はいくつですか・・・・・・・

∞とはなんですか・・・・・・・・

分からないものは考えられません・・・・・
宇宙消滅説:宇宙が、どんどんドン 拡大を続けると やがて 突然初めの段階 すなわち 0に戻るのではないだろうか。 ゼロ除算は、そのような事を言っているように思われる。 2015年12月3日 10:38








0 件のコメント:

コメントを投稿