「9-3÷1/3+1」が計算できなくて大丈夫なのか? 1部上場企業技術者「小学生以下」学力の実態
2015/12/ 3 18:55
大手企業の技術者の多くが、中学入試で出題されるような理数系の基礎的な問題を解けないことが、神戸大学や同志社大学などの研究グループの調査でわかった。
「9-3÷1/3+1」(1/3は、3分の1)という計算問題の正答率は、なんと6割を切ったという。優秀なはずの大手企業の技術者でも、小学生レベルの基礎的学力が身についていないことになる。
1部上場企業の技術者でも「小学生以下」の学力だった!(写真はイメージ)
1部上場企業の技術者でも「小学生以下」の学力だった!(写真はイメージ)
中学受験のかなりやさしいレベルで正答率6割切る
研究グループの調査は、2014年度に1部上場の製造業9社に在籍する主に20代の技術者1226人を対象に実施。神戸大学の西村和雄・経済経営研究所特命教授によると、出題した問題は「小学生の中学受験レベルで、計算問題においてはかなりやさしい問題」という。算数と理科・物理、技術用語に分けて、11問を設けた。「技術用語を除けば、文系出身者でも解ける常識問題です」と話している。
その結果、平均は56.66点(100点満点)。このうち「9-3÷1/3+1」という計算問題では、正答率が6割を切った。四則計算の優先順位がわかれば、正答を導き出せる初歩的な問題だが、技術者にはそれがわからなかった。
こうした基礎的学力の低下は、多くの技術者を抱える大手企業にも大きなショックだろう。
西村特命教授は、「現在、企業ではこうした基礎学力のある技術者とない技術者が共同で作業しているような状態で、企業側も学力不足の技術者の研修や授業に取り組んでいます。基礎的学力については、年配のベテラン技術者のほうがもっていますから、その方々が辞めてからが大変になるでしょう」と、危機感を抱いている。
ネット上では「信じられない」という反応続々
技術者のあまりの学力不足に、インターネットには、
「中1のときに同じ問題習ったわ」
「こんなんできないヤツが技術者でいるはずないやろ。大学もいけないじゃないか」
「理系離れ云々以上に深刻かもしれない」
「わいニートやけど、できるけど」
など、「信じられない」といった声が寄せられたほか、
「数学や物理のクソ難しい入試問題って、じつは技術者になるためにも必要なかったってこと」
「技術系では『/』は除算と認識するからねぇ。『9-3÷(1/3)+1』なのか、『9-3÷1÷3+1』なのか、この問題では読み取れない。いじわる問題だね」
といった負け惜しみのような声もあるにはある。
1980年代の正答率は9割だった
じつはこの「9-3÷1/3+1」の計算問題は、四則計算、とくに分数への理解力をみるための類型問題とされ、ある製造業企業が高校や大学を卒業したばかりの新人技術者に行っていた算数テストにも出題されていた。
中部経済連合会の「日本のものづくりの競争力再生と産業構造転換の推進」(2012年2月)に若手労働者の学力・能力低下の事例として盛り込まれ、その製造業企業の技術者の正答率は4割しかなかった。この企業では毎年、同様の算数テストを実施しており、1980年代の正答率は9割だったという。
日本人の学力水準が落ちている「証拠」としては、経済協力開発機構(OECD)が3年ごとに実施している生徒の学習到達度調査(PISA)がある。それによると、「数学的知識」で日本は2000年に第1位だったが、その後03年には6位、06年は10位まで後退。09年に9位、12年には7位とやや戻してきたところ。2003年に第1位だった「科学的知識」も、12年には4位まで後退してしまった。
最近は、「理数系」といっても生物や化学しかやっていない技術者も少なくないようで、大学受験でも数学III(微積分などを習う)を課さない理数系学部・学科もある。企業が採用時に学生に求める能力と実際の能力の差が広がっているのは間違いないようだ。http://www.j-cast.com/2015/12/03252296.html?p=all
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
100割る0 の意味を質問されたが(なぜ 100÷0は100ではないのか? なぜ 100÷1は100なのか… 0とは何...aitaitokidakenimoさん)、これは、定義によれば、その解、答えが有るとして、a と仮に置けば、 100=a x0 = 0 で矛盾、すなわち、解は、答えは存在しないとなる。
方程式 a x0= b は b=0 でなければ 解は無く、答えが求まらない。(特に、bが0ならば、解 a は 何でも良いと言うことに成る。)
解が、存在しなかったり、沢山の解が有ったりすると言う、状況である。
そこで、何時でも解が存在するように、しかも唯一つに定まるように、さらに 従来成り立っていた結果が そのまま成り立つように(形式不変の原理)、割り算の考えを拡張できないかと考えるのは、数学では よくやることである。数学の世界を 美しくしたいからである。
実際、文献の論文で 任意関数で割る概念を導入している。
現在の状況では、b 割るa の意味を ax – b の2乗を最小にする x で、しかも x の2乗を最小にする数 x で定義する。後半の部分が無いと、a が0の場合 x が定まらない。後半が有ると0として、唯一つに定まる。この意味で割り算の意味を考えれば、100割る0は 0 であるとなる。
上記で もちろん、2乗を最小にする の最小値が0である場合が、 普通の割り算の解、
b 割るa を与える。
もちろん、我々の意味で、0割る0は 曖昧なく、解は唯一つに定まって、0となる。
f 割る g を ロシアの著名な数学者 チコノフの考えた正則化法 と 再生核の理論 を併用すると 一般的な割り算を 任意関数g で定義できて、上記の場合は、100割る0は 0 という解に成る。
すなわち、解が存在しなかった場合に、割り算の意味を 自然に拡張すると 唯一つに解は存在して それは0であると言う、結果である。
上記で、ax – b の2乗を最小にする x で、と考えるのは、近似の考え方から、極めて自然と考えられるが、さらに、x の2乗を最小にする数 x とは、神は、最も簡単なものを選択する、これはエネルギー最小のもの、できれば横着したい という 世に普遍的に存在する 神の意志 が現れていると考えられる(光は、最短時間で到達するような経路で進むという ― フェルマーの原理)、神が2を愛している、好きだ とは 繰り返し述べてきた(神は 2を愛し給う)(http://www.jams.or.jp/kaiho/kaiho-81.pdf)。
これで、0で割るときの心配が無くなった。この考えの 実のある展開と応用は多い。
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
以 上
文献:
Castro, L.P.; Saitoh, S. Fractional functions and their representations. Complex Anal. Oper. Theory 7, No. 4, 1049-1063 (2013).
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では
無限遠点はどこにあるのでしょうか・・・・・
無限遠点は存在するが、無限大という数は存在しない・・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
割り算を掛け算の逆だと定義した人は、誰でしょう???
0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
アラビア数字の伝来と洋算 - tcp-ip
明治5年(1872)
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
(2014.7.11小柴誠一、山根正巳氏との会合で、道脇裕氏の 割り算と掛け算は別であり、ゼロ除算100/0=0は自明であるとの考えを分析して得た考えを纏めたものである。)
ゼロ除算100/0=0は2014.2.2 偶然に論文出筆中に 原稿の中で発見したものである。チコノフ正則化法の応用として、自然に分数、割り算を拡張して得られたものであるが、歴史上不可能であるとされていること、結果がゼロであると言う意味で、驚嘆すべきことであること、さらに、高校生から小学生にも分る内容であると言う意味で、極めて面白い歴史的な事件と言える。そればかりか、物理学など世界の理解に大きな影響を与えることも注目される。詳しい経過などは 一連の声明を参照:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
しかるに いろいろな人たちと広く議論しているところであるが、世界の指導的な数学者でさえ、高校生でも理解できる発表済みの論文 その後の結果について、現代数学の常識を変えるものであり、受け入れられない、と言ってきている。まことに不思議なことであり、如何に驚くべき結果であるかを示していると言える。
多くの数学者は、内容を理解せず、100/0=0 は100=0 x 0 =0 で矛盾であると即断している。しかるに論文は 100/0 は 割り算の意味を自然に拡張するとゼロの結果を得るのであって、ゼロ除算の結果は 100=0 x 0 =0を意味しないと説明している。 逆に、無限大、無限遠点は数と言えるかと問うている。
ところが面白いことに 既に3月18日付文書で、道脇裕氏は 掛け算と割り算は別であり、ゼロ除算100/0は 自明であると述べていた。しかし、その文書は、一見すると
矛盾や間違いに満ちていたので、詳しく分析してこなかった。しかるに上記7月11日の会合で、詳しい状況を聞いて、道脇氏の文書を解読して、始めて道脇氏の偉大な考えに気づいた。結論は、ゼロ除算100/0は分数、割り算の固有の意味から、自明であると言うことである。これはチコノフ正則化法や一般逆とは関係なく、分数、割り算の意味から、自明であるというのであるから、驚嘆すべき結果である。千年を越えて、未明であった真実を明らかにした意味で、極めて面白い知見である。またそれは、割り算が掛け算の逆であり、ゼロ除算は不可能であるという長い囚われた考えから、解放した考えであると評価できる。
原理は日本語の表現にあるという、掛け算は 足し算で定義され、割り算は 引き算で定義されるという。割り算を考えるのに 掛け算の考えは不要であるという。
実際、2 x3 は 2+2+2=6と繰り返して加法を用いて計算され、定義もできる。
割り算は、問題になっているので、少し詳しく触れよう。
声明は一般向きであるから、本質を分かり易く説明しよう。 そのため、ゼロ以上の数の世界で考え、まず、100/2を次のように考えよう:
100-2-2-2-,...,-2.
ここで、2 を何回引けるかと考え、いまは 50 回引いてゼロになるから分数は50であると考える。100を2つに分ければ50である。
次に 3/2 を考えよう。まず、
3 - 2 = 1
で、余り1である。そこで、余り1を10倍して、 同様に
10-2-2-2-2-2=0
であるから、10/2=5 となり
3/2 =1+0.5= 1.5
とする。3を2つに分ければ、1.5である。
これは筆算で割り算を行うことを 減法の繰り返しで考える方法を示している。a がゼロでなければ、分数b/aは 現代数学の定義と同じに定義される。
そこで、100/0 を上記の精神で考えてみよう。 まず、
100 - 0 = 100,
であるが、0を引いても 100は減少しないから、何も引いたことにはならず、引いた回数は、ゼロと解釈するのが自然ではないだろうか (ここはもちろん数学的に厳格に そう定義できる)。ゼロで割るとは、100を分けないこと、よって、分けられた数もない、ゼロであると考えられる。 この意味で、分数を定義すれば、分数の意味で、
100割るゼロはゼロ、すなわち、100/0=0である。(ここに、絶妙に面白い状況がある、0をどんどん引いても変わらないから、無限回引けると解釈すると、無限とも解釈でき、ゼロ除算は 0と無限の不思議な関係を長く尾を引いている。)
同様に0割る0は ゼロであること0/0=0が簡単に分かる。
上記が千年以上も掛かったゼロ除算の解明であり、 ニュートンやアインシュタインを悩ましてきたゼロ除算の簡単な解決であると 世の人は、受けいれられるであろうか?
いずれにしても、ゼロ除算z/0=0は 既に数学的に確定している と考えられる。そこで、結果の 世への影響 に関心が移っている。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
再生核研究所声明187(2014.12.8)工科系における数学教育について
30余年 工科系で数学の教育に携わって来た者として、それらを回想して今後同じような経験をされる人たちの参考になるように省察して置きたい。
まず、工科系における数学教育の目標を抑えて置こう:
1) 工科系全般における表現の立場から、数学上の述語、概念、記号などは工科系を表現する言語として必要であるから、関係数学の習得は必要である。典型的な概念として、微積分の概念、行列の概念、微分方程式、ベクトル解析(勾配、回転、発散)、解析関数の概念などは必須の概念と考えられよう。
2) 計算機の普及、応用を待つまでもなく、論理の学習; 論理的に考え、推論して纏め、表現できるような精神の涵養に 数学教育の重要性があると考えられる。
3)高級に表現すれば、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については次を参照:
No.81, May 2012(pdf 432kb)
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。
簡潔に述べれば、数学は 時間にも、エネルギーにもよらずに存在する神秘的な 関係の論理体系であるが、ユニバースは 数学を言語として構成されている という、信仰のような信念を抱いている。基本的な数学は ユニバースの基本的な様を表現しているのではないだろうか。すなわち、真理を追求する真摯な精神の涵養である。
それゆえに、工科系における数学教育の必要性は明らかである、それで、その明確な動機のもとで、数学教育に携われる工科系に属する数学の教師は、誠に充実感のする 社会的な使命を果たせる幸せな存在である。
担当の基本は、線形代数、微積分学、微分方程式、ベクトル解析、複素解析であろうが、それらは、理工科系の基本カリキュラムで、それらは、重要な概念を有していると考えられる。教える立場でも、ここをきちんと教えたいという、項目が多々存在する、楽しい数学である。
工科系で、生じる問題の基本は、工学 各学科の、期待、要請と 数学の専門家の担当する講義の仕方、カリキュラム内容との乖離で、しばしば問題が顕になる。上記、工科系における数学教育の目標について 科の先生方の反対意見は出ないと思われるが、近年、学生の基礎学力の大きな落ち込みの中で、科で直接必要、必須の言わば 1)の基本が疎かになり、科の教育に大きな障害が起きて、1)の強化、補充を数学教室に求めたり、科自身で補充の授業を準備する事態さえ招いている。数学教室で、科の要求する数学の内容を聞くと、相当に高級な現代的な数学の内容が広範に出てきて、対応できないような状況は よく見られる。体系的に見れば ちぐはぐ、また科の教員でも要求がバラバラな感じさえ受ける。もしそれらの要求を満たすようにするならば、辞書の項目の解説調になってしまい、数学者の好みである2)、3)項の要素が失われて、講義に熱が入らない気持ちになるのではないだろうか。― この観点が工科系における数学教育における問題の中心であると考えられる。
数学の教師の立場から見れば、自分の専門の研究に集中しすぎで、視野が狭く、工科系全般にわたる素養の貧しさを招き、しばしば独善的な講義スタイルになる傾向があるので、気をつけたい.
学科への対応の精神は、数学に分け与えられる時間数が極めて限られていて、しかも、要求される内容の豊富さを考えれば、講義内容を精選して、基礎の基礎、基本の基本をきちんと学習させ、多くの内容については、学生が必要に応じて、自分で学習できるようなるように教授するのが良いのではないだろうか。それには、まず、数学が楽しい、大いに有効であると 学生が感じられるような、そのような講義が望まれる。講義は全人格をかけた、交流の場であり、真理を追求する研究者の尊い姿が 学生への愛とともに 反映されるものでなくてはならない。学生による評価の問題で、教師が講義の有り様などいろいろ気遣い、板書やPDファイルなどの作成など講義の技術面などに関心が移っているような世相があるが、それらの営みの空虚さを指摘したい。そうではなくて、学生は、教師の学問に取り組む姿勢や、人生や社会に取り組む姿勢、全人格をみて教師を評価していることが分かるだろう。技術面のことよりは、研究者として、人間としての精進が肝要ではないだろうか。
人生とは何か、生きるということは どのようなことか、そのような問を忘れて久しいように感じられる世相ではないだろうか。学生は、いろいろな情報、勉学、就職関係の将来構想などなどで時間に追われ、教員も研究、教育に専念できず、さらに教育、研究の環境を悪化させる要務で忙しすぎて、何事じっくり取り組み、考察を深めるような貴重な時間を失っているように見える。学生時代には全人生を思考できるように 学生に自由を保証する精神が 大学教育の基本な配慮でなければならないと考える。― 学生時代は良かった、良い環境で、たっぷり自由な時間がとれた。
インターネットの普及で、いわゆる知識、単なる情報は、簡単にどこでも利用できる時代の到来は、カリキュラム、教育内容の精選と講義の有り様の変革をもたらし、自由の保証に明るい展望をもたらすのではないだろうか。その骨格として、講義、教育時間の縮小、休暇の増大、そのために一般教職員の大学の年間、1ヶ月間閉鎖、学生の休暇2ヶ月間を考えるのは良い出発点ではないだろうか。これらは既に、欧米の大学では相当に確立していて習慣になっていることも大いに参考にすべきではないだろうか。― 5年間ポルトガルのアヴェイロ大学で研究員として過ごしたが、何と8月は 大学の暦に 無かった。完全休暇である。土、日の休暇は当然で、水曜日は講義が無く、水曜日と金曜日は 昔の日本の土曜日のような調子で、金曜日午後には 多くの学生が、帰省するような情景であった。年中仕事に追われている 異常な日本の大学の有り様を見るにつけて、我々は大いに学び、大学の有り様を変革すべきだと考える。
そのような大幅な自由の下で、自主学習する風潮と日本のように 相当に学力などを気にして、詰み込み式授業の風潮のどちらが、長期的に見て優れているか、考えてみる必要があるのではないだろうか。ただし、自由の代償に 試験は相当に期間と時間を掛けて厳しくする風潮がある。
工科系に属する教員の担当学生数は、数学の所属部署で、最も多い状況にあり、ある意味で、数学を現実社会に活かす立場で それだけ大きな役割が有ると考えられる。教育ばかりではなく、入試に関与する部分も極めて大きく、入試業務は年中 心を傷めさせられる負担になっている場合が多いのではないだろうか。そもそも入試の有り様そのものの見直しを提案、問題提起しているが(再生核研究所声明20:大学入試センター試験の見直しを提案する),ポルトガルの制度を紹介して、関係者の検討を要望して置きたい:
有り様は簡単で、そもそも大学は入試業務を殆どせず、作成された資料を元に、選択するだけである。入試問題作成は国の機関が行い、入試は高校を会場に高校が期間を掛けて行なう。― このような入試で、個々の数学教員や、大学で膨大な仕事を課せられている日本の状況と比べて、唖然とさせられた。大きな仕事からの開放である。― 勿論、これは国立大学の場合であるが、私立大学などでも上記資料を参考にしているのではないだろうか。
さらに、女性数学者の割合が、殆ど自然に男女、同数であることは 数学の研究、教育、そして教室の雰囲気を日本のそれらとは相当に違ったものにしている。それらは、家庭と大学の仕事が両立出来る基礎があることを示しており、ポルトガルの大学は、相当に優雅であると表現されるだろう。7年目には 日曜日が週に有るように サバーティカルライトで1年間大学の仕事から解放される。それは、何を意味するだろうか。
以 上
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
実数の世界でも、複素数の世界でも ゼロで割ることは考えないのが 世界の常識である。しかしながら、ゼロで割れば、ゼロであるは もはや 数学的に確定している と言える:
特に声明154で、 まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、
関数 y = 1/x のグラフは、原点で ゼロである。 さらに、道脇裕氏は ゼロ除算が不可能であるとの世の誤解の原因が 除法が乗法の逆であるとの考えにあると考えられ、ゼロ除算は、除法の固有の意味からも自明であると述べられている(再生核研究所声明171)。詳しい経過などは 一連の声明を参照:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
グーグルの検索でも膨大な情報が有る:
Cerca de 32 100 000 resultados (0,45 segundos)
Resultados da procura
1. Division by zero - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Division_by_zero
Traduzir esta página
In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as a/0 where a is the dividend ...
Indeterminate form - Riemann sphere - USS Yorktown (CG-48) - Zero divisor
(2014:7:30:5:45)
が、不適切なものが大部分で、世の教科書、学術書、研究著書など 広範な記述が 真実に反している と言える。
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
(本当に面白い、中国茶。研究室に来る途中、 ちょうど、2014.5.5.8:00です。考えがひとりでにわきました。知りたい神の意志です。例の数学ですね。 どうして、無限遠点とゼロ点が 一致しているかです。作文が出来そうです。)
ゼロで割ることの一般化について、発見して3か月目に
100/0=0,0/0=0 誕生日(2014.2.2) 3か月:
足し算、引き算、掛け算は 何時もできる。 割り算はゼロで割ることが出来なかった。ゼロで割ればゼロになる、良い、自然な解釈を発見して、ちょうど3か月になる。ゼロで割る数学は 爆発、衝突などの特異現象を記述しているが、複素解析学では、従来の、無限遠点に対して、ゼロを対応させるべきとして、とんでもない現象を示している。
と記述し、詳しい経過
再生核研究所声明148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
や その後の経過、内容についても纏めている:
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
5日朝 ひとりでにわいた、新鮮な想いをできるだけ多くの人に、その奇妙な現象を表現して、世界の理解を深めたい。― 神も 世界も かすかにしか、感じられない - しかしながら ― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
述語やグラフに馴染みの薄い方は、下記注でインターネットなどで確認、 補充して下さい。要するに、 直角双曲線y=1/xのグラフも 立体射影における北極(無限遠点) も ゼロで割る考えの自然な一般化は 原点でゼロ、1/0=0, z/0=0 と 数学はなっている。十分な一般化でも、それ以外には考えられないとなっている。ところが、1変数複素解析学を実現させる立体射影では、複素数の世界では、1/0は 無限遠点として、球の北極を考えるのが世界の常識で、複素解析学の教科書、学術書は全て、現在そうなっている。そこで、発見された新しい概念に基づいて、そこに問題を提起し、無限遠点、無限は数ではないのではないか、おかしいのではないか と述べている。 他方、1/0=0 は割り算の概念を越えて、関数y=1/xとW=1/zが それぞれ、実数全体や複素数全体を 1対1に ちょうど対応させるなど 極めて自然な性質を有する。
しかしながら、ここで、極めて、面白い現象が起きている。 双曲線でも、球でも、原点の近くで、無限の彼方にとんでいるのに、原点で、突然ゼロに戻っているという、驚嘆すべき現象である。この驚嘆すべき不連続性のために、ゼロで割る新しい考えは受け入れられないと 人は思うだろうか?
逆に、その特異性こそ、ゼロで割ることの本質、要点であり、神の意志、思わせぶりが出ていると考えるべきか?
ビッグバン現象、接触現象、生と死の一致、永劫回帰の思想、ユニバースは 一体どうなっているのか (神の意志) と、そのからくり、 どうなっているのか しきりに 切に 知りたい。
天動説が地動説に変わったように、何時か、この強烈な不連続性を、ユニバースの常識と捉える時代が来るだろうか。それとも 神の気まぐれに 終わるだろうか。
注:
1. 直角双曲線
www.sist.ac.jp/.../chokkaku_sokyokusen.html
Traduzir esta página
反比例の関係を表すxy=k(k≠0)のような関係をx軸y軸平面に描くと、図のような直角双曲線となる。 kの値によって違う線となるが、いずれもx=0(y軸)とy=0(x軸)に限り ...
ステレオ投影:ウィキペディアより
http://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%86%E3%83%AC%E3%82%AA%E6%8A%95%E5%BD%B1
数学的な定義
単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory.(in press).
0 件のコメント:
コメントを投稿