2015年12月6日日曜日

古代の王の印章、ごみ捨て場の遺跡から発見 エルサレム 2015.12.04 Fri posted at 12:28 JST

古代の王の印章、ごみ捨て場の遺跡から発見 エルサレム
2015.12.04 Fri posted at 12:28 JST

発掘された紀元前8世紀の王の印章=エイラト・マザル氏提供
(CNN) エルサレムにあるごみ捨て場の遺跡からこのほど、思いがけないものが出土した。2700年前の王の印章だ。
ヘブライ大学(エルサレム)の発掘チームが発見したのは、紀元前8世紀のユダ王国の王、ヒゼキヤの印章。粘土で作られた印章は幅1センチ強の楕円(だえん)形で、パピルスに押印するのに使われたという。
発掘作業を指揮したエイラト・マザル氏は、CNNに「王の印章は非常に重要なものだった。王以外の誰かが使用する許可を得ていたとは考えにくい」と語った。
その上で「つまり、刻印も王自身が、自分の指輪を使って刻んだと考えるのが妥当だ」と指摘した。
旧約聖書にも登場するイスラエル王国やユダ王国の王の印章を学術調査隊が発見したのはこれが初めてだという。
印章には古代ヘブライ語で「ユダ王アハズ(の子)ヒゼキヤのもの」と書かれている。中央には2つのアンク十字にはさまれて下向きの翼を生やした太陽が描かれている。これは生命のシンボルだ。
印章が見つかった場所は、エルサレム旧市街のシルワン地区にある古代のごみ捨て場。印章は、王室関係の建物からごみと一緒に捨てられたと考えられている。
もっともここは、東エルサレムのパレスチナ人居住地区であり、イスラエルのチームが発掘を行うことには異論もある。発掘は東エルサレムや旧市街に対するユダヤ人の権利を主張するための「歴史的根拠」を探すためで、政治的な動機によるものだとの批判も聞かれる。http://www.cnn.co.jp/fringe/35074462.html?tag=top;topStories


Announcement 213: An interpretation of the identity $ 0.999999...... =1$


\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 213: An interpretation of the identity $ 0.999999...... =1$
}
\author{{\it Institute of Reproducing Kernels}\\

\date{}
\maketitle
{\bf Abstract: } In this announcement, we shall give a very simple interpretation for the identity: $ 0.999999......=1$.
\bigskip
\section{ Introduction}
On January 8, 2008, Yuusuke Maede, 8 years old boy, asked the question, at Gunma University, that (Announcement 9(2007/9/1): Education for genius boys and girls):
What does it mean by the identity:
$$
0.999999......=1?
$$
at the same time, he said: I am most interesting in the structure of large prime numbers. Then, a teacher answered for the question by the popular reason based on the convergence of the series: $0.9, 0.99, 0.999,... $. Its answer seems to be not suitable for the 8 years old boy with his parents (not mathematicians). Our answer seems to have a general interest, and after then, such our answer has not been heard from many mathematicians, indeed.
This is why writting this announcement.
\medskip
\bigskip
\section{An interpretation}
\medskip
In order to see the essence, we shall consider the simplist case:
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + ... = 1.
\end{equation}
Imagine a tape of one meter length, we will give its half tape: that is,
\begin{equation}
\frac{1}{2}.
\end{equation}
Next, we will give its (the rest's half) half tape; that is, $\frac{1}{2}\cdot \frac{1}{2} = \frac{1}{2^2}$, then you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} .
\end{equation}
Next, we will give the last one's half (the rest's half); that is, $\frac{1}{2}\cdot \frac{1}{2} \cdot \frac{1}{2}= \frac{1}{2^3}$,
then, you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3}.
\end{equation}
By this procedure, you will be able to obtain the small tapes endressly. Imagine all the sum as in the left hand side of (2.1). However, we will see that this sum is just the division of the one meter tape. Therefore, we will be able to confim the identity (2.1), clearly.
The question proposed by Y. Maede is just the small change the ratio $\frac{1}{2}$ by $\frac{9}{10}$.
\bigskip
\section{ Conclusion}
Y. Maede asked the true sense of the limit in the series:
$$
0.999999.....
$$
that is, this series is approaching to 1; however, is it equal or not ? The above interpretation means that the infinite series equals to one and it is just the infinite division of one. By this inverse approarch, the question will make clear.
\medskip
\bigskip
\section{Remarks}
Y. Maede stated a conjecture that for any prime number $p$ $( p \geqq 7)$, for $1$ of $ - 1$
\begin{equation}
11111111111
\end{equation}
may be divided by $p$ (2011.2.6.12:00 at University of Aveiro, by skype)
\medskip
(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf).
\medskip
This conjecture was proved by Professors L. Castro and Y. Sawano,
independently. Y. Maede gave later an interesting interpretation for his conjecture.
\medskip
(2015.2.26)
\end{document}


Announcement 214: Surprising mathematical feelings of a 7 years old girl

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 214: Surprising mathematical feelings of a 7 years old girl
}
\author{{\it Institute of Reproducing Kernels}\\

\date{}
\maketitle
{\bf Abstract: } In this announcement, we shall give the two surprising mathematical feelings of 7 years old girl Eko Michiwaki who stated the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical, and her results will be quite original.
\bigskip
\section{ Introduction}
We had met, 7 years old girl, Eko Michiwaki on November 23, 2014 at Tokyo Institute of Technology and August 23, 2014 at Kusatu Seminor House, with our colleagues. She, surprisingly enough, stated there repeatedly the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical and her results will be quite original.
\section{The division of any angle by 3}
\medskip
Eko Michiwaki said:
divide a given angle with 4 equal angles; this is simly done. Next, we divide one divided angle
with 4 equal angles similarly and the three angles add to other 3 angles. By continuing this procedure, we will be able to obtain the division by 3 of any angle. Her idea may be stated mathematically as follows:
$$
\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + ... ...= \frac{1}{3}.
$$
However, her idea seems to be more clear than the above mathematical formula. For this sentence, see \cite{ann3} for the sense of the limit.
\bigskip
\section{The division by zero $100/0=0$}
\medskip
As we stated in \cite{ann1}, she stated that division by zero $100/0=0$ is clear and trivial for our recent results \cite{cs,kmsy,s,ttk}. The basic important viewpoint is that division and product are different concepts and the division by zero $100/0=0$ is clear and trivial from the own sense of the division, independently of product \cite{ann1}. From the viewpoint, our colleagues stated as follows:
\medskip
On July 11, 2014, Seiichi Koshiba and Masami Yamane said at
Gunma University:
The idea for the division of Hiroshi Michiwaki and Eko Michiwaki (6 years
old daughter) is that division and product are different concepts and they
were calculated independently for long old years, by repeated addition and
subtraction, respectively. Mathematicians made the serious mistake for very
long years that the division by zero is impossible by considering that division
is the inverse operation of product. The division by zero was, however, clear
and trivial, as z/0=0, from the own nature of division.
\medskip
On February 21, 2015, Seiichi Koshiba and Masami Yamane visited our Institute and we confirmed this meaning of these sentences and the basic idea on the division by zero.
\medskip
(2015.2.27)
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances inLinear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics (in press).
\bibitem{ann1}
Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.
\bibitem{ann2}
Announcement 185: The importance of the division by zero $z/0=0$, Institute of Reproducing Kernels, 2014.11.28.
\bibitem{ann3}
Announcement 213: An interpretation of the identity $ 0.999999...... =1$, Institute of Reproducing Kernels, 2015.2.26.
\end{thebibliography}
\end{document}


\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}


\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 258: A new viewpoint of the division by zero $z/0=0$ from area and the point at infinity
}

\author{{\it Institute of Reproducing Kernels}\\
}

\date{November 26, 2015}

\maketitle
{\bf Abstract: } In this announcement, we will state a reality of the division by zero $z/0=0$ from the viewpoint of area and the point at infinity. We will be able to see a great impact for the idea of our space.

\bigskip
{\bf Introduction}

\bigskip

%\label{sect1}
By {\bf a natural extension of the fractions}
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, the division by zero
\begin{equation}
\frac{b}{0}=0,
\end{equation}
is clear and trivial. See (\cite{msy}) for the recent results. See also the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252}). The division by zero is not only mathematical problems, but also it will give great impacts to human beings and the idea on the universe. The Institute of Reproducing Kernels is presenting various opinions in Announcements (many in Japanese) on the universe.

In this Announcement, we will refer to a new viewpoint of the division by zero in the Euclidean space from area and the point at infinity. In our common level, the results will be very surprized for many peopule.

\section{The point at infinity}

We will be able to see the whole Euclidean plane by the stereographic projection onto the Riemann sphere. The behavior of the space around the point at infinity may be considered by that around the origin by the linear transform $W = 1/z$(\cite{ahlfors}). We thus see that

\begin{equation}
\lim_{z \to \infty} z = \infty,
\end{equation}
however,
\begin{equation}
[z]_{z =\infty} =0,
\end{equation}
by the division by zero. The difference of (1.1) and (1.2) is very important as we see clearly from the function $1/z$ and the behavior at the origin. The limiting value to the origin and the value at the origin are different. For the surprising results, we will state the property in the real space as follows:
\begin{equation}
\lim_{x\to +\infty} x =+\infty , \quad \lim_{x\to -\infty} x = -\infty,
\end{equation}
however,
\begin{equation}
[x]_{ +\infty } =0, \quad [x]_{ -\infty } =0.
\end{equation}

\section{Interpretation by area}

In orde to see some realization of the properties of (1.3) and (1.4), we will consider the triangle with the basic edge (side) $a$ and high $h$. Then, the area $S$ of the triangle is given
by
\begin{equation}
S = \frac{1}{2} ah.
\end{equation}
By fixing the high $h$ and the line containing the side $a$, we will consider the limit $a \to +\infty$. Then, of course,
\begin{equation}
\lim_{a \to +\infty} S = +\infty.
\end{equation}
However, we will see that
\begin{equation}
[S]_{a=\infty} =0,
\end{equation}
just like the division by zero, because, when $a=\infty$, the triangle is broken,
we cannot consider the area of the triangle. Here, the notation $a=\infty$ is not good, however, its meaning is clear; it will mean the case of the parallel lines of the line containing the side $a$ and the line through the fixed vertex of the triangles when we consider $a$ tends to $+\infty$.

The strong discontinuity of the division by zero is appeared as the broken of the triangles.
These phenomena may be looked in many situations as the unverse one.
We can consider similar problems for many types volumes. However, the simplest cases are
disc and sphere (ball) with radius $1/R$. When $R \to +0$, the areas and volumes tend to $+\infty$, however, when $R=0$, they are zero, because they become the half-plane and half-space, respectively.

\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{ahlfors}
Ahlfors, L. V. (1966). {\it Complex Analysis}. McGraw-Hill Book Company.

\bibitem{bht}
Bergstra, J. A., Hirshfeld Y., \& Tucker, J. V. (2009).
{\it Meadows and the equational specification of division} (arXiv:0901.0823v1[math.RA] 7 Jan) .

\bibitem{cs}
Castro, L. P., \& Saitoh, S. (2013).
Fractional functions and their representations. {\it Complex Anal. Oper. Theory {\bf7}, no. 4, }1049-1063.

\bibitem{kmsy}
Kuroda, M., Michiwaki, H., Saitoh, S.,\& Yamane, M. (2014).
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
{\it Int. J. Appl. Math. Vol. 27, No 2 }, 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
Michiwaki H., Saitoh S., \& Yamada M. (2015).
Reality of the division by zero $z/0=0$. IJAPM (International J. of Applied Physics and Math. (to appear).

\bibitem{mst}
Michiwaki, H., Saitoh, S., \& Takagi, M.
A new concept for the point at infinity and the division by zero z/0=0
(manuscript).

\bibitem{s}
Saitoh, S. (2014).
Generalized inversions of Hadamard and tensor products for matrices,
{\it Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 , 87-95.} http://www.scirp.org/journal/ALAMT/

\bibitem{taka}
Takahasi, S.-E. (2014).
{On the identities $100/0=0$ and $ 0/0=0$.}
(note)

\bibitem{ttk}
Takahasi, S.-E., Tsukada, M., \& Kobayashi, Y. (2015).
{\it Classification of continuous fractional binary operations on the real and complex fields. } Tokyo Journal of Mathematics {\bf 8}, no.2(in press).

\bibitem{ann179}
Division by zero is clear as z/0=0 and it is fundamental in mathematics. {\it Announcement 179 (2014.8.30).}

\bibitem{ann185}
The importance of the division by zero $z/0=0$. {\it Announcement 185 (2014.10.22)}.

\bibitem{ann237}
A reality of the division by zero $z/0=0$ by geometrical optics. {\it Announcement 237 (2015.6.18)}.

\bibitem{ann246}
An interpretation of the division by zero $1/0=0$ by the gradients of lines. {\it Announcement 246 (2015.9.17)}.

\bibitem{ann247}
The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$. {\it Announcement 247 (2015.9.22)}.

\bibitem{ann250}
What are numbers? - the Yamada field containing the division by zero $z/0=0$. {\it Announcement 250 (2015.10.20)}.

\bibitem{ann252}
Circles and curvature - an interpretation by Mr. Hiroshi Michiwaki of the division by
zero $r/0 = 0$. {\it Announcement 252 (2015.11.1)}.

\end{thebibliography}



\end{document}










AD

0 件のコメント:

コメントを投稿