日本発の科学論文、世界シェアで落ち込み目立つ
科学技術
[2015.12.03]
自然科学分野で日本人研究者が執筆する論文の本数、およびその引用件数が、10年ほど前から減少に転じている。他の主要国と比べた「シェア」でみると落ち込みが目立ち、「日本は将来、なかなかノーベル賞を獲得できなくなる」との懸念の声もある。
16 シンプルビュー / 印刷
現在はノーベル賞ラッシュでも
学術研究で世界最高の栄誉とされるノーベル賞。2015年は生理学・医学賞で大村智さん、物理学賞で梶田隆章さんの2人が受賞者に選ばれ、日本の自然科学の水準の高さを示した。2014年も3人の日本人研究者が物理学賞に輝いている。毎年のようにノーベル賞受賞者が出る一方で、近年は日本人研究者による論文数は減りつつある。
自然科学部門のノーベル賞は受賞した年からさかのぼって10-30年前位からの研究が多いとされ、最近の受賞者も1980 年代、1990年代の業績が評価されたケースが大半。今後もこのペースで受賞できるかは、疑問符がつく状況だ。
中国、ドイツに抜かれ、韓国が猛追
自然科学分野での日本人研究者の論文本数は、トムソン・ロイター社とエルゼビア社のデータベースに示されている。トムソン・ロイターのデータベースでは、2000年ごろから日本の論文数が停滞。エルゼビアでは、2004年の国立大学の法人化の数年後から論文が顕著に減少している。
トムソン・ロイターが物理学、化学、生物学、物質・材料科学、宇宙科学の5部門でまとめた主要7カ国を対象に作成した統計によると、1982年に同社がデータベースに取り込んだ研究論文は全世界で12万1739本。うち米国からの論文が3万3744本と最多で、日本は1万2534本と第2位につけていた。
ところが2011年の統計では、トップが米国で7万8242本、次いで中国が7万6664本、3位はドイツで3万3517本。日本は4位の3万1487本で、韓国の急追を受けている。
この背景として鈴鹿医療科学大学学長の豊田長康氏は、国が支出する研究資金の減少や、大学教員が校務など研究以外の活動に費やす時間が増えたことなど指摘する。
2008年にノーベル物理学賞を受賞した益川敏英氏はかつて、「ノーベル賞は毎年9人か10人受賞するので、(日本から)1人ぐらい出るのは当たり前だ」と語ったが、この「理論」を大まかに裏付けるものとして、論文数における日本のシェアがある。2001年ごろまで主要国の間での日本の論文数シェアは約10-13%であり、第2位というポジションで健闘してきた。
三重大学の学長経験もある豊田氏は、自然科学分野の論文を増やすためには、フルタイム研究者のポスト増が必要だと強調。nippon.comの電話取材に対し、「10年後には、ノーベル賞受賞者に占める日本人の割合は20人に1人まで減少するかもしれない」と語った。
法人化の余波、研究資金が減少
日本の国立大学は法人化を機に、文部科学省からの「運営費交付金」が毎年1%ずつ削減されている。これが研究費の減少、事務職員削減に伴う教員の事務負担増につながり、研究論文という“アウトプット”の数にも影響が出ているとの指摘がある。
東京大学や京都大学など、研究費が潤沢なトップ大学はごく一部。他の国立大学の多くは、企業などからの外部資金の導入に熱心にならざるを得ない。こうした中での研究は、産業界からの要請が強い実用的で、短期的に成果が出やすいものになりがちだ。
世界大学ランキングでも苦戦
英国の教育誌タイムズ・ハイヤー・エデュケーション(THE)が10月に発表した2015年世界大学ランキングによると、国内トップの東京大学が順位を下げ、前年のアジア首位から3位に転落。シンガポール国立大学と北京大学に次ぐ評価となった。
THE誌のランキングは論文引用数や外国人教員比率など13指標で評価されている。文部科学省は、2015年の評価指標では英語論文が重視されたことで、日本の大学には不利になったとみている。
世界の大学ランキング(タイムズ・ハイヤー・エデュケーション)
2014年 2015年
1 カリフォルニア工科大学(米) 1 カリフォルニア工科大学
2 ハーバード大学(米) 2 オックスフォード大学
3 オックスフォード大学(英) 3 スタンフォード大学
4 スタンフォード大(米) 4 ケンブリッジ大学
5 ケンブリッジ大学(英) 5 マサチューセッツ工科大学
6 マサチューセッツ工科大学(米) 6 ハーバード大学
7 プリンストン大学(米) 7 プリンストン大学
8 カリフォルニア大学バークレー校(米) 8 インペリアル・カレッジ ロンドン
9 インペリアル・カレッジ ロンドン(英) 9 スイス連邦工科大学チューリヒ校
10 イェール大学(米) 10 シカゴ大学(米)
100位以内に入ったアジアの大学
2014年 2015年
23 東京大学 26 シンガポール国立大学
25 シンガポール国立大学 42 北京大学
43 香港大学 43 東京大学
48 北京大学(中国) 44 香港大学
49 清華大学(中国) 47 清華大学
50 ソウル大学(韓国) 55 南洋理工大学
51 香港科技大学 59 香港科技大学
52 韓国科学技術院 85 ソウル大学
59 京都大学 88 京都大学
61 南洋理工大学(シンガポール)
66 浦項工科大学(韓国)
文: 村上 直久(編集部)
バナー写真:2015年のノーベル賞受賞が決まっている物理学賞の東京大宇宙線研究所・梶田隆章所長(左)、医学生理学賞の北里大学・大村智特別栄誉教授(中央)の表敬を受け、談笑する安倍晋三首相=2015年10月29日、東京・首相官邸(時事)
http://www.nippon.com/ja/features/h00127/
再生核研究所声明222(2015.4.8)日本の代表的な数学として ゼロ除算の研究の推進を求める
ゼロ除算の成果は 2015.3.23 明治大学で開催された日本数学会で(プログラムは5200部印刷、インターネットで公開)、海外約200名に経過と成果の発表を予告して 正規に公開された。簡単な解説記事も約200部学会で配布された。インターネットを用いて1年以上も広く国際的に議論していて、骨格の論文も出版後1年以上も経過していることもあり、成果と経過は一応の諒解が広く得られたと考えても良いと判断される。経過などについては 次の一連の声明を参照:
再生核研究所声明148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30) ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17) ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20) ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30) 掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15) ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
再生核研究所声明192(2014.12.27) 無限遠点から観る、人生、世界
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)―
再生核研究所声明194(2015.1.2) 大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3) ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4) ゼロ除算に於ける山根の解釈100= 0x0について
再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
再生核研究所声明202(2015.2.2) ゼロ除算100/0=0,0/0=0誕生1周年記念声明 ― ゼロ除算の現状と期待
再生核研究所声明215(2015.3.11) ゼロ除算の教え
日本の数学が、欧米先進国のレベルに達していることは、国際研究環境の実情を見ても広く認められる。しかしながら、初等教育から大学学部レベルの基本的な数学において 日本の貢献は 残念ながら特に見当たらないと言わざるを得ない。これは日本の数学が 大衆レベルでは 世界に貢献していないことを意味する。これについて 関孝和の微積分や行列式の発見が想起されるが、世界の数学史に具体的な影響、貢献ができなかったこともあって 関孝和の天才的な業績は 残念ながら国際的に認知されているとは言えない。
そこで、基本的なゼロ除算、すなわち、四則演算において ゼロで割れないとされてきたことが、何でもゼロで割れば ゼロであるとの基本的な結果は、世界の数学界における 日本の数学の顕著なものとして 世界に定着させる 良い題材ではないだろうか。
内容の焦点としてはまず:
ゼロ除算の発見、
道脇方式によるゼロ除算の意味付け、除算の定義、
高橋のゼロ除算の一意性、
衝突における山根の現象の解釈、
の4点が挙げられる。
6歳の道脇愛羽さんが、ゼロ除算は 除算の固有の意味から自明であると述べられていることからも分かるように、ゼロ除算は、ピタゴラスの定理を超えた基本的な結果であると考えられる。
ゼロ除算の研究の発展は 日本の代表的な数学である 佐藤の超関数の理論と密接な関係にあり(再生核研究所声明200)、他方、欧米では Aristotélēs の世界観、universe は連続である との偏見に陥っている現状がある。 最後にゼロ除算の意義 に述べられているように ゼロ除算の研究は 日本の数学として発展させる絶好の分野であると考えられる。 そこで、広く関係者に研究の推進と結果の重要性についての理解と協力を求めたい。
ゼロ除算の意義:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 1/0=0, 0/0=0をもたらしたこと。
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、 独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。
11)ゼロ除算が可能であるか否かの議論について:
現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。
12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として受け入れることである。
以 上
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269
1+0=1 1ー0=0 1×0=0 では、1/0・・・・・・・・・幾つでしょうか。
0??? 本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・
割り算を掛け算の逆だと定義した人は、誰でしょう???
まして、10個のリンゴを0人で分けた際に、取り分 が∞個の小さな部分が取り分は、どう考えてもおかしい・・・・
受け取る人がいないわけですから、取り分は0ではないでしょうか。 すなわち何でも0で割れば、0が正しいのではないでしょうか。じゃあ聞くけど、∞個は、どれだけですか???
小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
https://www.pinterest.com/pin/234468724326618408/
1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・
加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849/a37209195?sort=1&fr=chie_my_notice_canso
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。
http://www.mirun.sctv.jp/~suugaku/%E5%A0%AA%E3%82%89%E3%81%AA%E3%81%8F%E6%A5%BD%E3%81%97%E3%81%84%E6%95%B0%E5%AD%A615.5.htm
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでもセロであるという意外な結果が得られた。
無限遠点は存在するが、無限大という数は存在しない・・・・
天動説・・・・・・∞
地動説・・・・・・0
1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
何とゼロ除算は、可能になるだろうと April 12, 2011 に 公に 予想されていたことを 発見した。
多くの数学で できないが、できるようになってきた経緯から述べられたものである。
Dividing by Nothing
by Alberto Martinez
It is well known that you cannot divide a number by zero. Math teachers write, for example, 24 ÷ 0 = undefined.
After all, other operations that seemed impossible for centuries, such as subtracting a greater number from a lesser, or taking roots of negative numbers, are now common. In mathematics, sometimes the impossible becomes possible, often with good reason.
Posted April 12, 2011More Discoverhttps://notevenpast.org/dividing-nothing/
アラビア数字の伝来と洋算 - tcp-ip
明治5年(1872)
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0
地球人はどうして、ゼロ除算1300年以上もできなかったのか? 2015.7.24.9:10 意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 生態系では、人類が がん細胞であった とならないとも 限らないのでは?
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
宇宙消滅説:宇宙が、どんどんドン 拡大を続けると やがて 突然初めの段階 すなわち 0に戻るのではないだろうか。 ゼロ除算は、そのような事を言っているように思われる。 2015年12月3日 10:38
再生核研究所声明259 (2015.12.04) 数学の生態、旬の数学 ―ゼロ除算の勧め
数学とは何だろうかと問うてきたが(No.81, May 2012(pdf 432kb) www.jams.or.jp/kaiho/kaiho-81.pdf)違う観点から、はじめに数学の生態について外観して、ゼロ除算の研究の勧めを提案したい。
純粋数学の理論は 恰も人間とは無関係に存在して、まるで神の言語のように感じられるが、しかしながら、生活している人間、関与している人間、またそれらを支えている社会が数学の発展の行くすえ、成長の生態に反映されているのは事実である。実際、最も古く、超古典のユークリッド幾何学の発展、現状を見れば、数学の生態の様を見ることができる。その幾何学は 素朴に土地を測るという、現実の要求から生まれ、知的要求で言わば社会との関わりを有しないレベルまで発展して、膨大な理論体系が作られたが、現在では研究の専門家がいない程に確立した理論とされている。研究課題としては終わっていると考えられる。多くの数学も同様な経過を辿っている様を見ることができる。多くは物理学やいろいろな現象から新しい数学が生まれた例は多いが、ここは、素朴な数学の具体例、基本的な問題から、新しい数学が生まれ、発展して、やがて、細分化、孤立化した結果に至って 衰退している様を 数学の生態として捉えることができるだろう。社会との関係が薄く、興味を抱く人が少なくなれば、その数学は衰退すると ―すなわち 誰もやらなくなり、殆ど忘れされていくことになるだろう。この意味で、多くの数学も、花の命や人の一生のように 夢多き時期、華やいだ時期、衰退して行く時期といろいろな時期があると考えるのが妥当ではないだろうか。基本的で、新規な結果がどんどん展開されるときは、その数学の発展期で、活動期にあると考えられる.他方、他との関係が付かず、興味、関心を抱く者が少なくなれば、既に衰退期にあり、研究は労あって成果は小さいと言えよう。
数学を言わば輸入に頼っている国では、価値観も定かではなく、権威ある、あるいは数学の未解決問題の解明や小さな部分の形式的な拡張や精密化に力を入れている現実がある。見るだけでうんざりしてしまう論文は 世に多いと言える:
再生核研究所声明128 (2013.8.27): 数学の危機、 末期数学について
(特に純粋数学においては、考えられるものは何でも考える自由な精神で真理の追究を行なっているから(再生核研究所声明36:恋の原理と心得)、一旦方向が、課題が定まると、どんどん先に研究が進められる。基本的な精神は 内部における新しい概念と問題の発掘、拡張、すなわち一般化と精密化、そして他の数学との関係の追求などである。それらがどんどん進むと、理解出来る者、関心を抱く者がどんどん少なくなり、世界でも数人しか興味を抱く者がいないという状況になり、そのような状況は 今や珍しくはないと言える。 ― 興味以前に分からない、理解できないが 殆どであると言える。 また、何のための結果かと問われる結果が 現代数学の大部分を占めていると言えるだろう。特に数学内部の興味本位の結果は そのような状況に追い込まれ、数学の末期的状況の典型的な形相と言えるだろう。実際、相当なブームに成っていた数学の分野が、興味や関心を失い、世界でも興味を抱く者が殆どいなくなる分野は 結構実在する。それらの様は、さまざまな古代遺跡のように見えるだろう。― 夏草や兵どもが夢の跡(なつくさや つわものどもがゆめのあと):松尾芭蕉。
もちろん、数学は、時間によらないようであるから、オイラーの公式のように、基本的で美しく、いろいろ広く関係しているような結果は、普遍 (不変) 的な価値を 有すると言える。)
どの辺の数学に興味を抱くは、個人の好みであるが、最近考えられているゼロ除算は極めて初期の段階にあり、夢多き段階にあると見られので、広く世に状況を公表して、ゼロ除算の研究を推進したい。
ゼロ除算は、西暦628年インドでゼロが記録されて以来の発見で、全く未知の新しい数学、前人未到の新世界の発見である。すなわち、ゼロで割るは 不可能であるがゆえに 考えてはいけないとされてきたところ、ゼロで割ることができるとなったのであるから、全く未知の世界を探検できる。 既に数学的には確立され、物理的、幾何学的にも実証されている。 最近、素人にも分かるような例が結構発見されてきたので、 広く 世にそのような面白い新しい現象の発見を呼びかけたい。まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、関数y = 1/x のグラフは、原点で ゼロであると述べている。すなわち、 1/0=0 である。それらは 既に 数の実体である と言える。
― 要点は、上記直角双曲線は、原点で猛烈な不連続性を有し、爆発や衝突、コマで言えば、 中心の特異性などの現象を記述していることである。複素解析学では、1/0として、無限遠点が存在して、美しい世界であるが、無限遠点は 数値としては ゼロが対応する。
現在までに発見されたゼロ除算の実現例を簡単に列挙して置こう:
万有引力の法則で、2つの質点が一致すれば、引力はゼロである;一定の角速度で回転している回転体の中心で、角速度はゼロで、中心で不連続性を有している;光の輝度は 光源でゼロであること:円の中心の鏡像は 無限遠点ではなくて、中心そのものであるという強力な不連続性;電柱の微小な左右の揺れから、真っ直ぐに立った電柱の勾配はゼロであり、左右からマイナス無限とプラス無限の傾きの一致として、傾きゼロが存在している; 代数的には ゼロ除算z/0=0を含む簡単な体の構造が明らかにされ、数体系として自然な体系である複素数体より ゼロ除算z/0=0を含むY体 の方が自然であると考えられること; 点の曲率がゼロであること、などである。
さらに、原始的なテコの原理にもゼロ除算は明確に現れ、初等幾何学にも明確に現れ、例えば、半径Rの円をどんどん大きくすると,円の面積はいくらでも大きくなるが、半径が無限になると突然、その面積はゼロになることが認識された。 Rが無限になると円は直線になり、円は壊れて半空間になるからである。 このことの明確な意味が数学的に捉えられ、一般に図形が壊れる現象をゼロ除算は表していることが分かった。これらの現象は ゼロ除算が 普遍的に存在する現象を説明するもの と考えられる。
また、ゼロ除算において 無限遠点が 数値では ゼロで表されることは 驚嘆すべきことであり、それではuniverse は一体どうなっているのかと、真智への愛の 激しい情念が湧いてくるのではないだろうか。ゼロ除算は、数学ばかりではなく、物理学や世界観や文化にも大きな影響を与える:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算の最も関与している研究は まず 第1に複素解析学への影響、複素解析学の研究ではないだろうか。 実際、ゼロ除算は、ローラン展開そのものの見方から始まり、それは佐藤の超関数や特異積分などに関係している。
第2は、 ゼロ除算の物理学への影響である。 これは、ニュートンの万有引力の法則など多くの物理法則の公式に、ゼロ除算が現れているので、それらに対する新しい結果の解釈、影響である。
第3は ゼロ除算の代数的な、あるいは作用素論的な研究である。これらも始まったばかりであり、出版が確定している論文:
S.-E. Takahasi, M. Tsukada and Y.Kobayashi, Classification of continuous fractional binary operators on the realand complex fields, Tokyo Journal of Mathematics {\bf 8}(2015), no.2 (in press).
がそれらの最先端である。
これらの分野では、誰でも先頭に立てる全く新しい研究分野と言える。
全く、新しい研究分野となると、若い人がやみくもに挑戦するのは危険だと考えるのは、 よく理解できるが、ある程度自己の研究課題が確立していて、多少の余裕がみいだせる方は、新しい世界を自分の研究課題と比較しながら、ちょっと覗いてみるかは、面白いのではないだろうか。思わぬ関係が出てくるのが、数学の研究の楽しさであると言える面は多い。アメリカ新大陸に初めて移った人たちの想い、 ピッツバーグの地域に初めて移住した人たちの想いを想像してみたい。ゼロ除算は 新しい数学である。専門家はいないから、多くの人が面白い現象を発見できる機会があると考えられる。
次も参考:
再生核研究所声明189(2014.12.233) ゼロ除算の研究の勧め
再生核研究所声明222(2015.4.8) 日本の代表的な数学として ゼロ除算の研究の推進を求める
再生核研究所声明253(2015.10.28) 私も探そう ―ゼロ除算z/0=0 の現象
以 上
追記: ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
再生核研究所声明 44 (2010/06/26):
梅の木学問と檜学問-日本の研究者育成についての危惧
初めに、大谷杉郎 群馬大学名誉教授の 宮大工(…… その晩、「梅の木学問」という言葉に出会った。梅は成長は速いが大木にならない。そのように、進み方は早いが学問を大成させないで終わるのをいうのだそうである。その反対が、成長は遅いが大木になる「楠くすのき学問」だと書いてある。西岡棟梁の話を聞いた直後だったので、千年の先を見極め、千年以上も生きつづける学問を「檜学問」と呼んでも良さそうである。学校教育の目標はこれにして欲しい。: 夜明け前 よっちゃんの想い 158-160)を想い出し、日本の研究者育成の観点から、考察を行いたい。
先ず第1に述べたいのは 研究者の育成や、教育の問題は、 在りよう、考え方、目標などいずれも多様性が大事であり、いろいろな考え方や見方を尊重する必要があるということである。 従って、ここでの議論も一つの視点と柔軟に考えて頂きたいということである。
( …… しかし、何よりも大事なことは、個々の意見ではなくて、このようにいろいろ考え、いろいろな意見をまとめ、多くの人の意見を交換していくことと思っています。 私は、そのきっかけを与えようとしているに過ぎません。──哲学は教えられない、ただ哲学することが教えられるだけだ──という言葉が想い出されます。私は、専門家や知識をもっている人だけが良識や見識を持っているとは考えず、善良な市民の感覚のなかにこそ、大きな真実と良識があると思っています。ですから、いろいろな広い人たちからのご意見や提案を期待しているのです。 2009 年7月23 日にて)
次に、上記 大谷教授の宮大工 の引用部分の 前の本文は、 宮大工の心意気と癖組などの考え方など 誠に心惹きつけるものがあるが、上記引用部分の考え方には 多少の疑念も湧くが、他方、心惹きつけるものもある。
疑念とは、進み方は早いが学問を大成させないで終わる 生き方、学問も個性として、それはそれでいいのではないか、逆に 千年以上も生きつづける学問が良いとは限らないという価値観と視点である。― 梅も檜も それぞれに良い。
それにも関わらず、現在の日本の研究者育成の観点から、この件について、危惧の念を抱かざるを得ない。 それは特に 共通テスト開始以後、特に顕著になっているのは いわゆる国立大学の法人化移行後の 悪しき風潮に対する危惧である。
共通テスト開始以後 盛んになったのは、細切れの知識偏重と大学の画一化による点数による序列化、入試技術の専門化などである ― それ以前の入試の多様性と時間的な余裕を比較されたい。国立大学の法人化移行後は、財政状況の悪化と共に評価,評価の嵐と悪しき成果主義と膨大な雑用の増加である。
その結果、これらに対応できる研究者とは、受験体制に調子良くのれ、大学院でも早く成果の出せる上記梅の木型の研究者となりかねない状況ではないかと危惧せざるを得ない。
なるほど、優秀な研究者は どのような環境、体制でものり越えて、良い研究業績を上げることができる という見解には 誠一理あるが、しかしながら、多くの労力を費やし、雑念を入れ、結果として、能力を生かせない状況が広く存在していると考える。才能を活かせず、才能を殺してしまう状況が世に多くあると考える。また、それゆえに、いわば大器晩成型の多くの才能をうずもらせてしまうのではないかとおそれる。
言いたいことは、学部あたりまでの教育には 時間的な余裕を与え、人生や世界、自然などに想いを致したり、あるいは友情を育てたり、自らを顧みることのできる余裕を用意することである。 そこで、人生の基礎をしっかりと身につけて欲しいと考える。- また、そのような余裕のうちから、イチロー選手や、谷亮子選手、荒川静香選手、坂本龍一氏のような 多彩な才能が芽吹くことが期待できるのではないだろうか。天才教育や少年留学なども大いに進めて頂きたい(声明9)。
ここで、さらに気になるのは、かつて安保闘争や学園紛争に見られたような、若者の元気さが失われ、無気力、無感動、元気のない学生の増加である。世界についても、哲学についても、真理の追究などについても 聞くことは もはや稀である。 小手先の学力をつけることに追われて、精神面や健康面が失われているのではないかと危惧される。
他方、大学院以上においては、成果、成果と急がずに 研究課題の選択や、基礎について深い、広い視点が持てるように、経済的にも時間的にも十分な待遇を用意すべきである。何事初めの段階における取り組みは、 将来に亘って、決定的に大事になると考える。
初期段階において、目先の成果を求めれば 研究課題は成果が得られ易い、個別の研究課題となり、しっかりとした研究課題が確立できないのは当然ではないだろうか。 どんな課題でも 研究成果を出すのは容易ではないから、それらに集中しているうちに、その研究課題の枠外から出られないように陥り、研究課題が小さな世界に特化してしまうのは、多くの普通の研究者の悲しい在り様と言えるだろう。
助教などの制度によって、助手の身分を 形だけ上げて、講義や雑用を課し、さらに任期制を導入したりして 処遇を悪化させているのは 大学人の反省すべき悪しき制度ではないだろうか。研究以外義務が無いような研究員として処遇するのは 若手研究者育成の要ではないかと考える。 実際、そのような時期に 研究の基礎が確立された研究者は 世に多いと考えられる。さらに、世界の指導的な研究者たちとの交流が 研究者の成長に大きく寄与した例は 非常に多いと考えられる。
日本の研究者育成の観点から、現状の問題点を総合的に見直して、よりよい位置づけと対応を考えるのは 緊急の現代的な課題であると考える。現状の風潮では、いざ本格的な研究活動に入るころ、若き研究者達が立ち枯れ病にかかってしまう危険性は 極めて高いと危惧される。
再生核研究所声明167(2014.6.21)大学などで アカデミックなポストを得る心得
(本声明は あるポスドクの方の パーマネントポストに就く心得を纏めて欲しい との要望によるものである。安定した職に就きたいは 一 若い研究者の切実な願望ではないだろうか)
上記の観点で、また、安定した収入を得る心得、方法を纏めて欲しいとの要望も寄せられているが、研究者などは 大学などに きちんとした職を得ることが、生活を安定させる基本である。 一応、常勤職につけば 生涯生活は保証されるとして、極めて重要な人生の観点である。
これは人事権を有する、関与する人々、多くは関係教授の判断に左右されるが、一般的な観点と意外な観点も有るので、経験してきた、人事を顧みながら、触れてみたい。
まず、 アカデミックポストには、多くは 採用したい希望が述べられた、公募要項が有るのが普通である。 最近の人事では、多数の応募が有るから、それらの基準に達していることは、相当に必要であり、それらの基準に達しない場合には、相当に厳しいのではないだろうか。少なくても公募を公正に行なえば、厳しいと言える。多くの機関では、基準として、博士号を有すること、出版論文数など いろいろな基準が内規で定められている場合が多い、その時は、それらに達していることが 書類選考の段階でも 必要条件になってしまう。逆にみれば、そのような基準を軽く越えているように、整えて置くのは、研究者の処世の第1歩といえる。
しかし、社会も 大学もそう公正にいくものでは無く、担当者によっては、仲間を優遇したり、特別なコネが 公募精神の公正さを越えて、担当者の都合で、自分の都合で人事を行うことは結構多い。これには、研究課題が細分化し、高度化し 特別な仲間でしか、通じず、通じる仲間をとらざるを得ない状況を反映させていると言える。もっと進めれば、実権ある教授が、共同研究できる人物を、自分に寄与できる人物を探すような実状さえ 多く有するだろう。これは、公のポストでさえ、公正の原則に反するとは言えない。教授は研究を推進する大きな義務を負う者、共同研究者を探すのは大事である という観点が有るからである。 しかしながら、これも行き過ぎると、組織が専門的に偏りの人事構成に成るなど、弊害が出て来る面もある。組織や研究機関の理念に反して、機関において異質の人事構成になることは 結構多い。- 職を探す者は、そのような特殊性が有る場合には、公募要項を越えて、応募する機会があると考えるべきである。さらに進めれば、私をとれば、組織は、あなたは、このような利益を得ることができると、具体的に暗示することは、書類の作成段階でも良いのではないだろうか。
そのような面では、研究課題で、採用する者が決まる、強い要素がある。採用する側の研究課題と採用される者の研究課題の相性の問題である。研究組織は、抜群の業績と才能を有する者でなければ、研究組織内で 研究交流できない研究者を採用することは、 組織の拡大、カリキュラムの大きな変更など 余程のことが無い限り、ないのではないだろうか。このような観点からも、研究課題を、あまりにも狭い範囲に限定しないで、研究課題でも対話が広い分野で成り立つように 広げて置くのは良いことではないだろうか?
人事は採用する側にとっても極めて重要であるから、採用に責任ある者は、採用する者の人物評価を真剣に行うだろう。採用する人物の周辺についてもいろいろ意見を求め、人物についての良い定評があれば 人事を進める場合に極めて有効で、書類選考などでも大いに効果が出るだろう。これは国際会議や、研究発表場面などで 研究内容と人物評価を何時もされていると心得るべきである。そのような場面で、採用責任者の好感が定着されていれば、人事に相当に有効であろう。単に書類や文献で知る人物と、面識が有って、人物と研究課題で評価されている人物とでは 大きな評価の差が出て来ると考えられるから、研究交流は 大事な機会と捉えるべきである。その時、配偶者も交えて、良い評価が得られれば、強い印象を与えると言う意味で、さらに良い効果を生むだろう。採用責任者は 人物の背後状況にさえ、大いに気を回すだろう。人事は、いわゆる書類に現れた評価を越えて、人物評価、全人格が大きな評価の基準になると考えられる。― ここで、優秀過ぎる人材は、自分の存在を脅かす観点から、敬遠される要素もあると言う、適当な謙虚さは必要かも知れない。
コネや人脈などは 大いに大事にすべきであり、研究仲間を広げ 大きな機会の場を作るように研究活動、日常生活で心がけるべきである。相当な人事は そのような人脈、研究仲間を通して行われるのは 公募、公募、公正、機会均等と言っても、そう簡単には行かないのが 現実ではないだろうか。また、博士課程における指導教授の影響は、永く相当に強いのではないだろうか。
以 上
0 件のコメント:
コメントを投稿