2018年10月12日金曜日

What Is Spacetime?

What Is Spacetime?

Physicists believe that at the tiniest scales, space emerges from quanta. What might these building blocks look like?
People have always taken space for granted. It is just emptiness, after all—a backdrop to everything else. Time, likewise, simply ticks on incessantly. But if physicists have learned anything from the long slog to unify their theories, it is that space and time form a system of such staggering complexity that it may defy our most ardent efforts to understand.
Albert Einstein saw what was coming as early as November 1916. A year earlier he had formulated his general theory of relativity, which postulates that gravity is not a force that propagates through space but a feature of spacetime itself. When you throw a ball high into the air, it arcs back to the ground because Earth distorts the spacetime around it, so that the paths of the ball and the ground intersect again. In a letter to a friend, Einstein contemplated the challenge of merging general relativity with his other brainchild, the nascent theory of quantum mechanics. That would not merely distort space but dismantle it. Mathematically, he hardly knew where to begin. “How much have I already plagued myself in this way!” he wrote.
Einstein never got very far. Even today there are almost as many contending ideas for a quantum theory of gravity as scientists working on the topic. The disputes obscure an important truth: the competing approaches all say space is derived from something deeper—an idea that breaks with 2,500 years of scientific and philosophical understanding.
Down the Black Hole
A kitchen magnet neatly demonstrates the problem that physicists face. It can grip a paper clip against the gravity of the entire Earth. Gravity is weaker than magnetism or than electric or nuclear forces. Whatever quantum effects it has are weaker still. The only tangible evidence that these processes occur at all is the mottled pattern of matter in the very early universe—thought to be caused, in part, by quantum fluctuations of the gravitational field.
Black holes are the best test case for quantum gravity. “It’s the closest thing we have to experiments,” says Ted Jacobson of the University of Maryland, College Park. He and other theorists study black holes as theoretical fulcrums. What happens when you take equations that work perfectly well under laboratory conditions and extrapolate them to the most extreme conceivable situation? Will some subtle flaw manifest itself?
General relativity predicts that matter falling into a black hole becomes compressed without limit as it approaches the center—a mathematical cul-de-sac called a singularity. Theorists cannot extrapolate the trajectory of an object beyond the singularity; its time line ends there. Even to speak of “there” is problematic because the very spacetime that would define the location of the singularity ceases to exist. Researchers hope that quantum theory could focus a microscope on that point and track what becomes of the material that falls in.
Out at the boundary of the hole, matter is not so compressed, gravity is weaker and, by all rights, the known laws of physics should still hold. Thus, it is all the more perplexing that they do not. The black hole is demarcated by an event horizon, a point of no return: matter that falls in cannot get back out. The descent is irreversible. That is a problem because all known laws of fundamental physics, including those of quantum mechanics as generally understood, are reversible. At least in principle, you should be able to reverse the motion of all the particles and recover what you had.
A very similar conundrum confronted physicists in the late 1800s, when they contemplated the mathematics of a “black body,” idealized as a cavity full of electromagnetic radiation. James Clerk Maxwell’s theory of electromagnetism predicted that such an object would absorb all the radiation that impinges on it and that it could never come to equilibrium with surrounding matter. “It would absorb an infinite amount of heat from a reservoir maintained at a fixed temperature,” explains Rafael Sorkin of the Perimeter Institute for Theoretical Physics in Ontario. In thermal terms, it would effectively have a temperature of absolute zero. This conclusion contradicted observations of real-life black bodies (such as an oven). Following up on work by Max Planck, Einstein showed that a black body can reach thermal equilibrium if radiative energy comes in discrete units, or quanta.
Theoretical physicists have been trying for nearly half a century to achieve an equivalent resolution for black holes. The late Stephen Hawking of the University of Cambridge took a huge step in the mid-1970s, when he applied quantum theory to the radiation field around black holes and showed they have a nonzero temperature. As such, they can not only absorb but also emit energy. Although his analysis brought black holes within the fold of thermodynamics, it deepened the problem of irreversibility. The outgoing radiation emerges from just outside the boundary of the hole and carries no information about the interior. It is random heat energy. If you reversed the process and fed the energy back in, the stuff that had fallen in would not pop out; you would just get more heat. And you cannot imagine that the original stuff is still there, merely trapped inside the hole, because as the hole emits radiation, it shrinks and, according to Hawking’s analysis, ultimately disappears.
This problem is called the information paradox because the black hole destroys the information about the infalling particles that would let you rewind their motion. If black hole physics really is reversible, something must carry information back out, and our conception of spacetime may need to change to allow for that.
Atoms of Spacetime
Heat is the random motion of microscopic parts, such as the molecules of a gas. Because black holes can warm up and cool down, it stands to reason that they have parts—or, more generally, a microscopic structure. And because a black hole is just empty space (according to general relativity, infalling matter passes through the horizon but cannot linger), the parts of the black hole must be the parts of space itself. As plain as an expanse of empty space may look, it has enormous latent complexity.
Even theories that set out to preserve a conventional notion of spacetime end up concluding that something lurks behind the featureless facade. For instance, in the late 1970s Steven Weinberg, now at the University of Texas at Austin, sought to describe gravity in much the same way as the other forces of nature. He still found that spacetime is radically modified on its finest scales.
Physicists initially visualized microscopic space as a mosaic of little chunks of space. If you zoomed in to the Planck scale, an almost inconceivably small size of 10–35 meter, they thought you would see something like a chessboard. But that cannot be quite right. For one thing, the grid lines of a chessboard space would privilege some directions over others, creating asymmetries that contradict the special theory of relativity. For example, light of different colors might travel at different speeds—just as in a glass prism, which refracts light into its constituent colors. Whereas effects on small scales are usually hard to see, violations of relativity would actually be fairly obvious.
The thermodynamics of black holes casts further doubt on picturing space as a simple mosaic. By measuring the thermal behavior of any system, you can count its parts, at least in principle. Dump in energy and watch the thermometer. If it shoots up, that energy must be spread out over comparatively few molecules. In effect, you are measuring the entropy of the system, which represents its microscopic complexity.
If you go through this exercise for an ordinary substance, the number of molecules increases with the volume of material. That is as it should be: If you increase the radius of a beach ball by a factor of 10, you will have 1,000 times as many molecules inside it. But if you increase the radius of a black hole by a factor of 10, the inferred number of molecules goes up by only a factor of 100. The number of “molecules” that it is made up of must be proportional not to its volume but to its surface area. The black hole may look three-dimensional, but it behaves as if it were two-dimensional.
This weird effect goes under the name of the holographic principle because it is reminiscent of a hologram, which presents itself to us as a three-dimensional object. On closer examination, however, it turns out to be an image produced by a two-dimensional sheet of film. If the holographic principle counts the microscopic constituents of space and its contents—as physicists widely, though not universally, accept—it must take more to build space than splicing together little pieces of it.
The relation of part to whole is seldom so straightforward, anyway. An H2O molecule is not just a little piece of water. Consider what liquid water does: it flows, forms droplets, carries ripples and waves, and freezes and boils. An individual H2O molecule does none of that: those are collective behaviors. Likewise, the building blocks of space need not be spatial. “The atoms of space are not the smallest portions of space,” says Daniele Oriti of the Max Planck Institute for Gravitational Physics in Potsdam, Germany. “They are the constituents of space. The geometric properties of space are new, collective, approximate properties of a system made of many such atoms.”
What exactly those building blocks are depends on the theory. In loop quantum gravity, they are quanta of volume aggregated by applying quantum principles. In string theory, they are fields akin to those of electromagnetism that live on the surface traced out by a moving strand or loop of energy—the namesake string. In M-theory, which is related to string theory and may underlie it, they are a special type of particle: a membrane shrunk to a point. In causal set theory, they are events related by a web of cause and effect. In the amplituhedron theory and some other approaches, there are no building blocks at all—at least not in any conventional sense.
Although the organizing principles of these theories vary, all strive to uphold some version of the so-called relationalism of 17th- and 18th-century German philosopher Gottfried Leibniz. In broad terms, relationalism holds that space arises from a certain pattern of correlations among objects. In this view, space is a jigsaw puzzle. You start with a big pile of pieces, see how they connect and place them accordingly. If two pieces have similar properties, such as color, they are likely to be nearby; if they differ strongly, you tentatively put them far apart. Physicists commonly express these relations as a network with a certain pattern of connectivity. The relations are dictated by quantum theory or other principles, and the spatial arrangement follows.
Phase transitions are another common theme. If space is assembled, it might be disassembled, too; then its building blocks could organize into something that looks nothing like space. “Just like you have different phases of matter, like ice, water and water vapor, the atoms of space can also reconfigure themselves in different phases,” says Thanu Padmanabhan of the Inter-University Center for Astronomy and Astrophysics in India. In this view, black holes may be places where space melts. Known theories break down, but a more general theory would describe what happens in the new phase. Even when space reaches its end, physics carries on.
Entangled Webs
The big realization of recent years—and one that has crossed old disciplinary boundaries—is that the relevant relations involve quantum entanglement. An extrapowerful type of correlation, intrinsic to quantum mechanics, entanglement seems to be more primitive than space. For instance, an experimentalist might create two particles that fly off in opposing directions. If they are entangled, they remain coordinated no matter how far apart they may be.
Traditionally when people talked about “quantum” gravity, they were referring to quantum discreteness, quantum fluctuations and almost every other quantum effect in the book—but never quantum entanglement. That changed when black holes forced the issue. Over the lifetime of a black hole, entangled particles fall in, but after the hole evaporates fully, their partners on the outside are left entangled with—nothing. “Hawking should have called it the entanglement problem,” says Samir Mathur of Ohio State University.
Even in a vacuum, with no particles around, the electromagnetic and other fields are internally entangled. If you measure a field at two different spots, your readings will jiggle in a random but coordinated way. And if you divide a region in two, the pieces will be correlated, with the degree of correlation depending on the only geometric quantity they have in common: the area of their interface. In 1995 Jacobson argued that entanglement provides a link between the presence of matter and the geometry of spacetime—which is to say, it might explain the law of gravity. “More entanglement implies weaker gravity—that is, stiffer spacetime,” he says.
Several approaches to quantum gravity—most of all, string theory—now see entanglement as crucial. String theory applies the holographic principle not just to black holes but also to the universe at large, providing a recipe for how to create space—or at least some of it. For instance, a two-dimensional space could be threaded by fields that, when structured in the right way, generate an additional dimension of space. The original two-dimensional space would serve as the boundary of a more expansive realm, known as the bulk space. And entanglement is what knits the bulk space into a contiguous whole.
In 2009 Mark Van Raamsdonk of the University of British Columbia gave an elegant argument for this process. Suppose the fields at the boundary are not entangled—they form a pair of uncorrelated systems. They correspond to two separate universes, with no way to travel between them. When the systems become entangled, it is as if a tunnel, or wormhole, opens up between those universes, and a spaceship can go from one to the other. As the degree of entanglement increases, the wormhole shrinks in length, drawing the universes together until you would not even speak of them as two universes anymore. “The emergence of a big spacetime is directly tied into the entangling of these field theory degrees of freedom,” Van Raamsdonk says. When we observe correlations in the electromagnetic and other fields, they are a residue of the entanglement that binds space together.
Many other features of space, besides its contiguity, may also reflect entanglement. Van Raamsdonk and Brian Swingle, now at the University of Maryland, College Park, argue that the ubiquity of entanglement explains the universality of gravity—that it affects all objects and cannot be screened out. As for black holes, Leonard Susskind of Stanford University and Juan Maldacena of the Institute for Advanced Study in Princeton, N.J., suggest that entanglement between a black hole and the radiation it has emitted creates a wormhole—a back-door entrance into the hole. That may help preserve information and ensure that black hole physics is reversible.
Whereas these string theory ideas work only for specific geometries and reconstruct only a single dimension of space, some researchers have sought to explain how all of space can emerge from scratch. For instance, ChunJun Cao, Spyridon Michalakis and Sean M. Carroll, all at the California Institute of Technology, begin with a minimalist quantum description of a system, formulated with no direct reference to spacetime or even to matter. If it has the right pattern of correlations, the system can be cleaved into component parts that can be identified as different regions of spacetime. In this model, the degree of entanglement defines a notion of spatial distance.
In physics and, more generally, in the natural sciences, space and time are the foundation of all theories. Yet we never see spacetime directly. Rather we infer its existence from our everyday experience. We assume that the most economical account of the phenomena we see is some mechanism that operates within spacetime. But the bottom-line lesson of quantum gravity is that not all phenomena neatly fit within spacetime. Physicists will need to find some new foundational structure, and when they do, they will have completed the revolution that began just more than a century ago with Einstein.
Nature 557, S3-S6 (2018)
ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・・・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本

再生核研究所声明 375 (2017.7.21):ブラックホール、ゼロ除算、宇宙論
                        
本年はブラックホール命名50周年とされていたが、最近、wikipedia で下記のように修正されていた:
名称[編集]                                    
"black hole"という呼び名が定着するまでは、崩壊した星を意味する"collapsar"[1](コラプサー)などと呼ばれていた。光すら脱け出せない縮退星に対して "black hole" という言葉が用いられた最も古い印刷物は、ジャーナリストのアン・ユーイング (Ann Ewing) が1964年1月18日の Science News-Letter の "'Black holes' in space" と題するアメリカ科学振興協会の会合を紹介する記事の中で用いたものである[2][3][4]。一般には、アメリカ物理学者ジョン・ホイーラーが1967年に "black hole" という名称を初めて用いたとされるが[5]、実際にはその年にニューヨークで行われた会議中で聴衆の一人が洩らした言葉をホイーラーが採用して広めたものであり[3]、またホイーラー自身は "black hole" という言葉の考案者であると主張したことはない[3]https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%A9%E3%83%83%E3%82%AF%E3%83%9B%E3%83%BC%E3%83%AB

世界は広いから、情報が混乱することは よく起きる状況がある。ブラックホールの概念と密接な関係のあるゼロ除算の発見(2014.2.2)については、歴史的な混乱が生じないようにと 詳しい経緯、解説、論文、公表過程など記録するように配慮してきた。
ゼロ除算は簡単で自明であると初期から述べてきたが、問題はそこから生じるゼロ除算算法とその応用であると述べている。しかし、その第1歩で議論は様々でゼロ除算自身についていろいろな説が存在して、ゼロ除算は現在も全体的に混乱していると言える。インターネットなどで参照出来る膨大な情報は、我々の観点では不適当なものばかりであると言える。もちろん学術界ではゼロ除算発見後3年を経過しているものの、古い固定観念に囚われていて、新しい発見は未だ認知されているとは言えない。最近国際会議でも現代数学を破壊するので、認められない等の意見が表明された(再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告)。そこで、初等数学から、500件を超えるゼロ除算の証拠、効用の事実を示して、ゼロ除算は確定していること、ゼロ除算算法の重要性を主張し、基本的な世界を示している。
ゼロ除算について、膨大な歴史、文献は、ゼロ除算が神秘的なこととして、扱われ、それはアインシュタインの言葉に象徴される:

Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (Gamow, G., My World Line (Viking, New York). p 44, 1970).

ところが結果は、実に簡明であった:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

しかしながら、ゼロ及びゼロ除算は、結果自体は 驚く程単純であったが、神秘的な新たな世界を覗かせ、ゼロ及びゼロ除算は一層神秘的な対象であることが顕になってきた。ゼロのいろいろな意味も分かってきた。 無限遠点における強力な飛び、ワープ現象とゼロと無限の不思議な関係である。アリストテレス、ユークリッド以来の 空間の認識を変える事件をもたらしている。 ゼロ除算の結果は、数理論ばかりではなく、世界観の変更を要求している。 端的に表現してみよう。 これは宇宙の生成、消滅の様、人生の様をも表しているようである。 点が球としてどんどん大きくなり、球面は限りなく大きくなって行く。 どこまで大きくなっていくかは、 分からない。しかしながら、ゼロ除算はあるところで突然半径はゼロになり、最初の点に帰するというのである。 ゼロから始まってゼロに帰する。 ―― それは人生の様のようではないだろうか。物心なしに始まった人生、経験や知識はどんどん広がって行くが、突然、死によって元に戻る。 人生とはそのようなものではないだろうか。 はじめも終わりも、 途中も分からない。 多くの世の現象はそのようで、 何かが始まり、 どんどん進み、そして、戻る。 例えばソロバンでは、願いましては で計算を始め、最後はご破産で願いましては、で終了する。 我々の宇宙も淀みに浮かぶ泡沫のようなもので、できては壊れ、できては壊れる現象を繰り返しているのではないだろうか。泡沫の上の小さな存在の人間は結局、何も分からず、われ思うゆえにわれあり と自己の存在を確かめる程の能力しか無い存在であると言える。 始めと終わり、過程も ようとして分からない。

ブラックホールとゼロ除算、ゼロ除算の発見とその後の数学の発展を眺めていて、そのような宇宙観、人生観がひとりでに湧いてきて、奇妙に納得のいく気持ちになっている。

以 上

再生核研究所声明 411(2018.02.02):  ゼロ除算発見4周年を迎えて

ゼロ除算100/0=0を発見して、4周年を迎える。 相当夢中でひたすらに その真相を求めてきたが、一応の全貌が見渡せ、その基礎と展開、相当先も展望できる状況になった。論文や日本数学会、全体講演者として招待された大きな国際会議などでも発表、著書原案154ページも纏め(http://okmr.yamatoblog.net/)基礎はしっかりと確立していると考える。数学の基礎はすっかり当たり前で、具体例は700件を超え、初等数学全般への影響は思いもよらない程に甚大であると考える: 空間、初等幾何学は ユークリッド以来の基本的な変更で、無限の彼方や無限が絡む数学は全般的な修正が求められる。何とユークリッドの平行線の公理は成り立たず、すべての直線は原点を通るというが我々の数学、世界であった。y軸の勾配はゼロであり、\tan(\pi/2) =0 である。 初等数学全般の修正が求められている。
数学は、人間を超えたしっかりとした論理で組み立てられており、数学が確立しているのに今でもおかしな議論が世に横行し、世の常識が間違っているにも拘わらず、論文発表や研究がおかしな方向で行われているのは 誠に奇妙な現象であると言える。ゼロ除算から見ると数学は相当おかしく、年々間違った数学やおかしな数学が教育されている現状を思うと、研究者として良心の呵責さえ覚える。
複素解析学では、無限遠点はゼロで表されること、円の中心の鏡像は無限遠点では なくて中心自身であること、ローラン展開は孤立特異点で意味のある、有限確定値を取ることなど、基本的な間違いが存在する。微分方程式などは欠陥だらけで、誠に恥ずかしい教科書であふれていると言える。 超古典的な高木貞治氏の解析概論にも確かな欠陥が出てきた。勾配や曲率、ローラン展開、コーシーの平均値定理さえ進化できる。
ゼロ除算の歴史は、数学界の避けられない世界史上の汚点に成るばかりか、人類の愚かさの典型的な事実として、世界史上に記録されるだろう。この自覚によって、人類は大きく進化できるのではないだろうか。
そこで、我々は、これらの認知、真相の究明によって、数学界の汚点を解消、世界の文化への貢献を期待したい。
ゼロ除算の真相を明らかにして、基礎数学全般の修正を行い、ここから、人類への教育を進め、世界に貢献することを願っている。
ゼロ除算の発展には 世界史がかかっており、数学界の、社会への対応をも 世界史は見ていると感じられる。 恥の上塗りは世に多いが、数学界がそのような汚点を繰り返さないように願っている。
人の生きるは、真智への愛にある、すなわち、事実を知りたい、本当のことを知りたい、高級に言えば神の意志を知りたいということである。そこで、我々のゼロ除算についての考えは真実か否か、広く内外の関係者に意見を求めている。関係情報はどんどん公開している。
4周年、思えば、世の理解の遅れも反映して、大丈夫か、大丈夫かと自らに問い、ゼロ除算の発展よりも基礎に、基礎にと向かい、基礎固めに集中してきたと言える。それで、著書原案ができたことは、楽しく充実した時代であったと喜びに満ちて回想される。
以 上

再生核研究所声明 394(2017.11.4):  ゼロで割れるか ― ゼロで割ったらユークリッド以来の新世界が現れた

ゼロで割る問題は、ゼロ除算は Brahmagupta (598 -668 ?)以来で、彼は Brhmasphuasiddhnta(628)で 0/0=0 と定義していた。ゼロ除算は古くから物理、哲学の問題とも絡み、アリストテレスはゼロ除算の不可能性を述べていたという。現在に至っても、アインシュタイン自身の深い関心とともに相対性理論との関連で相当研究がなされていて、他方、ゼロ除算の計算機障害の実害から、論理や計算機上のアルゴリズムの観点からも相当な研究が続けられている。さらに、数学界の定説、ゼロ除算の不可能性(不定性)に挑戦しようとする相当な素人の関心を集めている。現在に至ってもいろいろな説が存在し、また間違った意見が出回り世間では混乱している。しかるに、 我々は、ゼロ除算は自明であり、ゼロ除算算法とその応用が大事であると述べている。
まずゼロで割れるか否かの問題を論じるとき、その定義をしっかりすることが大事である。 定義をきちんとしないために空回りの議論をしている文献が大部分である。何十年も超えて空回りをしている者が多い。割れるとはどのような意味かと問題にしなければならない。 数学界の常識、割り算は掛け算の逆であり、az =b の解をb割るaと定義し、分数b/a を定義すると考えれば、直ちにa=0の場合には、一般に考えられないと結論される。それで、ゼロ除算は神でもできないとか神秘的な議論が世に氾濫している。しかしながら、この基本的な方程式の解が何時でも一意に存在するように定義するいろいろな考え方が存在する。有名で相当な歴史を有する考え方が、Moore-Penrose一般逆である。その解はa=0 のとき、ただ一つの解z=0 を定める。よって、この意味で方程式の解を定義すれば、ゼロ除算 b/0, b割るゼロはゼロであると言える。そこで、このような発想、定義は自然であるから、発見の動機、経緯は違うが、ゼロ除算は可能で、b/0=0 であると言明した。Moore-Penrose一般逆の自然性を認識して、ゼロ除算は自明であり、b/0=0 であるとした。
それゆえに、神秘的な歴史を持つ、ゼロ除算は 実は当たり前であったが、現在でもそうは認識されず混乱が続いている。その理由は、関数 W = 1/z の原点での値をゼロとする考えに発展、適用するとユークリッド以来、アリストテレス以来の世界観の変更に繋がるからである。1/0は無限大、無限と発想しているからである。実際、原点の近くは限りなく原点から遠ざかり、限りなく遠くの点、無限の彼方に写っている歴然とした現象か存在する。しかるに 原点が原点に写るというのであるから、これらの世界観は ユークリッド空間、アリストテレスの世界観に反することになる。それゆえに Moore-Penrose一般逆は一元一次方程式の場合、意味がないものとして思考が封じられてきたと考えられる。
そこで、この新しい数学、世界観が、我々の数学や世界に合っているか否かを広範囲に調べてみることにした。その結果、ユークリッドやアリストテレスの世界観は違っていて、広範な修正が必要であることが分った。

そこで、次のように表現して、広く内外に意見を求めている:

 Dear the leading mathematicians and colleagues:
 Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.
I wrote a simple draft on our division by zero. The contents are elementary and have wide connections to various fields beyond mathematics. I expect you write some philosophy, papers and essays on the division by zero from the attached source.
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh

国内の方には次の文も加えている:
我々の初等数学には 間違いと欠陥がある。 学部程度の数学は 相当に変更されるべきである。しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、思い込みに囚われた存在であるかを知ることが出来るだろう。この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、人間の無智の故であると言える。
 三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、ユークリッド以来 捉えられていないと言える。(2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)
ゼロ除算の優秀性、位置づけ : 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、考えなかったこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然である。 優秀性の大きさは、新しい発見の影響の大きさによる(2017.8.24.05:40) 
思えば、我々は未だ微分係数、勾配、傾きの概念さえ、正しく理解されていないと言える。 目覚めた時そのような考えが独りでに湧いた。
典型的な反響は 次の物理学者の言葉に現れている:
Here is how I see the problem with prohibition on division by zero, which is the biggest scandal in modern mathematics as you rightly pointed out(2017.10.14.8:55).
現代数学には間違いがあり、欠陥がある、我々の空間の認識はユークリッド、アリストテレス以来 間違っていると述べている。
ゼロ除算の混乱は、世界史上に於ける数学界の恥である。そこで、数学関係者のゼロ除算の解明による数学の修正を、ゼロ除算の動かぬ、数学の真実にしたがって求めたい。詳しい解説を 3年を超えて素人向きに行っている:数学基礎学力研究会公式サイト 楽しい数学
www.mirun.sctv.jp/~suugaku/
以 上

ゼロ除算の発見と重要性を指摘した:日本、再生核研究所   2014年2月2日
ゼロ除算、ゼロで割る問題、分からない、正しいのかなど、 良く理解できない人が 未だに 多いようです。そこで、簡潔な一般的な 解説を思い付きました。 もちろん、学会などでも述べていますが、 予断で 良く聞けないようです。まず、分数、a/b は a  割る b のことで、これは 方程式 x=a の解のことです。ところが、 b がゼロならば、 どんな xでも 0 x =0 ですから、a がゼロでなければ、解は存在せず、 従って 100/0 など、ゼロ除算は考えられない、できないとなってしまいます。 普通の意味では ゼロ除算は 不可能であるという、世界の常識、定説です。できない、不可能であると言われれば、いろいろ考えたくなるのが、人間らしい創造の精神です。 基本方程式 b x=a が b がゼロならば解けない、解が存在しないので、困るのですが、このようなとき、従来の結果が成り立つような意味で、解が考えられないかと、数学者は良く考えて来ました。 何と、 そのような方程式は 何時でも唯一つに 一般化された意味で解をもつと考える 方法があります。 Moore-Penrose 一般化逆の考え方です。 どんな行列の 逆行列を唯一つに定める 一般的な 素晴らしい、自然な考えです。その考えだと、 b がゼロの時、解はゼロが出るので、 a/0=0 と定義するのは 当然です。 すなわち、この意味で 方程式の解を考えて 分数を考えれば、ゼロ除算は ゼロとして定まる ということです。ただ一つに定まるのですから、 この考えは 自然で、その意味を知りたいと 考えるのは、当然ではないでしょうか?初等数学全般に影響を与える ユークリッド以来の新世界が 現れてきます。
ゼロ除算の誤解は深刻:

最近、3つの事が在りました。

私の簡単な講演、相当な数学者が信じられないような誤解をして、全然理解できなく、目が回っているいるような印象を受けたこと、
相当ゼロ除算の研究をされている方が、基本を誤解されていたこと、1/0 の定義を誤解されていた。
相当な才能の持ち主が、連続性や順序に拘って、4年以上もゼロ除算の研究を避けていたこと。

これらのことは、人間如何に予断と偏見にハマった存在であるかを教えている。
まずは ゼロ除算は不可能であるの 思いが強すぎで、初めからダメ、考えない、無視の気持ちが、強い。 ゼロ除算を従来の 掛け算の逆と考えると、不可能であるが 証明されてしまうので、割り算の意味を拡張しないと、考えられない。それで、 1/0,0/0,z/0 などの意味を発見する必要がある。 それらの意味は、普通の意味ではないことの 初めの考えを飛ばして ダメ、ダメの感情が 突っ走ている。 非ユークリッド幾何学の出現や天動説が地動説に変わった世界史の事件のような 形相と言える。
2018.9.22.6:41
ゼロ除算の4つの誤解:
1.      ゼロでは割れない、ゼロ除算は 不可能である との考え方に拘って、思考停止している。 普通、不可能であるは、考え方や意味を拡張して 可能にできないかと考えるのが 数学の伝統であるが、それができない。
2.      可能にする考え方が 紹介されても ゼロ除算の意味を誤解して、繰り返し間違えている。可能にする理論を 素直に理解しない、 強い従来の考えに縛られている。拘っている。
3.      ゼロ除算を関数に適用すると 強力な不連続性を示すが、連続性のアリストテレス以来の 連続性の考えに囚われていて 強力な不連続性を受け入れられない。数学では、不連続性の概念を明確に持っているのに、不連続性の凄い現象に、ゼロ除算の場合には 理解できない。
4.      深刻な誤解は、ゼロ除算は本質的に定義であり、仮定に基づいているので 疑いの気持ちがぬぐえず、ダメ、怪しいと誤解している。数学が公理系に基づいた理論体系のように、ゼロ除算は 新しい仮定に基づいていること。 定義に基づいていることの認識が良く理解できず、誤解している。
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

0 件のコメント:

コメントを投稿