MBA数学备考:怎样提升自己的解题速度
MBA数学备考:怎样提升自己的解题速度
原标题:轻松搞定MBA数学考点 提高解题速度
在参加MBA联考的考生中一直流传着一句话,叫做“得数学者得天下”,虽然MBA数学只有70多分的分值,但却是考生最容易拉开分数差距的科目,如何学好数学,为自己在联考笔试中争取有利位置,是每位考生最关心的问题。
对于数学基础差的考生而言,端正对数学的看法是提高数学成绩的基础。数学的本质是一种语言,一种用特殊方式标记的语言,而且是一种很有魅力的语言。有了这个基本认识,数学就不那么枯燥了。既然是语言,那么起步阶段最有效的学习方式就是——背。不但要把定理背得滚瓜烂熟,还要把典型的例题背得体无完肤才行。其实那些所谓的考题,大部分都是把定理掰开了、揉碎了,考一些不起眼的细微之处。 考生只要用心去背过这些定理,都可以从中找到解决办法。当然,背和理解的过程是紧密结合在一起的,对原理的理解越透彻,背得越轻松,背得越熟练,对原理的理解也会在不断的重复中得到提高。
想要在最后的MBA数学考试中脱颖而出,最重要的还是自己的努力。反复做题,背定理。做练习的时候,要按照考试要求规定时间,70分钟做完23道题,长此以往,做题速度和正确率都会有显著提高。
数学
在MBA数学考试中,其实时间才是考试中决定性的因素,因为MBA数学的难度只相当于高中刚水平,如果没有时间限制,最后的成绩不会有太大悬殊。
临考冲刺阶段,MBA帮助大家总结了在做题过程中的一些经验,主要是针对提高解题速度而言。如果觉得这些方法有用的话,MBA同学们可以拿来参考。
一、特值法
顾名思义,特值法就是找一些符合题目要求的特殊条件解题。
例:f(n)=(n+1)^n-1(n为自然数且n>1),则f(n)
(A)只能被n整除
(B)能被n^2整除
(C)能被n^3整除
(D)能被(n+1)整除
(E)A、B、C、D均不正确
解答:令n=2和3,即可立即发现f(2)=8,f(3)=63,于是知A、C、D均错误,而对于目前五选一的题型,E大多情况下都是为了凑五个选项而来的,所以,一般可以不考虑E,所以,马上就可以得出答案为B。
例:在等差数列{an}中,公差d≠0,且a1、a3、a9成等比数列,则(a1+a3+a9)/(a2+a4+a10)等于
(A)13/16
(B)7/8
(C)11/16
(D)-13/16
(E)A、B、C、D均不正确
解答:取自然数列,则所求为(1+3+9)/(2+4+10),选A。
例:C(1,n)+3C(2,n)+3^2C(3,n)+……+3^(n-1)C(n,n)等于
(A)4^n
(B)3*4^n
(C)1/3*(4^n-1)
(D)4^n/3-1
(E)A、B、C、D均不正确
解答:令n=1,则原式=1,对应下面答案为D。
例:已知abc=1,则a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)等于
(A)1
(B)2
(C)3/2
(D)2/3
(E)A、B、C、D均不正确
解答:令a=b=c=1,得结果为1,故选A。
例:已知A为n阶方阵,A^5=0,E为同阶单位阵,则
(A)|A|>0
(B)|A|<0
(C)|E-A|=0
(D)|E-A|≠0
(E)A、B、C、D均不正确
解答:令A=0(即零矩阵),马上可知A、B、C皆错,故选D。
二、代入法
代入法,即从选项入手,代入已知的条件中解题。
例:线性方程组
x1+x2+λx3=4
-x1+λx2+x3=λ^2
x1-x2+2x3=-4
有唯一解
(1)λ≠-1
(2)λ≠4
解答:对含参数的矩阵进行初等行变换难免有些复杂,而且容易出错,如果直接把下面的值代入方程,判断是否满足有唯一解,就要方便得多。答案是选C。
例:不等式5≤|x^2-4|≤x+2成立
(1)|x|>2
(2)x<3
解答:不需要解不等式,而是将条件(1)、(2)中找一个值x=2.5,会马上发现不等式是不成立的,所以选E。
例:行列式
10x1
011x=0
1x01
x110
(1)x=±2
(2)x=0
解答:直接把条件(1)、(2)代入题目,可发现结论均成立,所以选D。
三、反例法
找一个反例在推倒题目的结论,这也是经常用到的方法。通常,反例选择一些很常见的数值。
例:A、B为n阶可逆矩阵,它们的逆矩阵分别是A^T、B^T,则有|A+B|=0
(1)|A|=-|B|
(2)|A|=|B|
解答:对于条件(2),如果A=B=E的话,显然题目的结论是不成立的,这就是一个反例,所以最后的答案,就只需考虑A或E了。
例:等式x^2/a^2+y^2/b^2+z^2/c^2=1成立
(1)a^2+b^2+c^2=x^2+y^2+z^2
(2)x/a+y/b+z/c=1,且a/x+b/y+c/z=0
解答:对于条件(1),若a=b=c=x=y=z=1,显然题目的结论是不成立的。所以,最后的答案,就只需要考虑B、C或E了。
新浪声明:此消息系转载自新浪博客,新浪网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考。
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
行ってきました:世界を変えた書物展
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 454: The International Conference on Applied Physics and Mathematics, Tokyo, Japan, October 22-23}
\author{{\it Institute of Reproducing Kernels}\\
kbdmm360@yahoo.co.jp
}
\date{2018.9.29}
\maketitle
{\Large \bf
The Institute of Reproducing Kernels is dealing with the theory of division by zero calculus and declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space based on the new concept of division by zero calculus: for the function $f(z) = 1/z$
$$
f(0) = 0
$$
since Aristotelēs (BC384 - BC322) and Euclid (BC 3 Century - ), and the division by zero is since Brahmagupta (598 - 668 ?).
In particular, Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we showed that his definition is suitable.
For the details, see the site: http://okmr.yamatoblog.net/
\medskip
In the above international conference:
\medskip
\medskip
John Martin, Program Coordinator\\
http://www.meetingsint.com/conferences/\\appliedphysics-mathematics\\Applied Physics and Mathematics Conference 2018\\
appliedphysics@annualmeetings.net\\
appliedphysics@meetingseries.org
\medskip
\medskip
we will present our results while 11:00-12:00, October 23 and we will accept all the related questions and comments while 13:00-15:00 around.
For the details, please see the below:
\medskip
(If a person participates in our session around the morning and afternoon free discussions, he should pay euro 250. If the person registers in a group of 5 or more, the amount will be reduced to euro 180 per person. The morning session is very valuable and has the potential to bring change in the education system.
For one night stay on 22nd October, he needs to pay euro 150.
I hope everything is clear.
Kindly let me know if any query.
Thanks!
Regards,
John)
}
\bigskip
\bigskip
{\Huge \bf
Close the mysterious and long history of division by zero and \\ open the new world since Aristoteles-Euclid: $1/0=0/0=z/0= \tan (\pi/2)=0.$
}
\bigskip
\bigskip
{\large \bf
For a triangle ABC with side length $a,b,c$.
We have the formula
$$
\frac{a^2 + b^2 - c^2}{a^2 - b^2 + c^2} = \frac{\tan B}{\tan C}.
$$
If $ a^2 + b^2 - c^2 =0$, then $C = \pi/2$. Then,
$$
0 = \frac{\tan B}{\tan \frac{\pi}{2}} = \frac{\tan B}{0}.
$$
Meanwhile, for the case
$
a^2 - b^2 + c^2 =0,
$
then $B = \pi/2$, and we have
$$
\frac{a^2 + b^2 - c^2}{0}= \frac{\tan \frac{\pi}{2}}{\tan C}=0.
$$
\end{document}
再生核研究所声明 451(2018.9.14): みんなの数学、大衆の数学 ― 和算の風土を取り戻そう
小林龍彦先生の解説:
○ 和算入門-
○ 和算入門-
小林 龍彦 前橋工科大学名誉教授
を毎月楽しく拝見している。 江戸時代の文化的な風情が感じられて堪らなく愛おしい数学と数学の愛好者の世界が感じられる。 江戸時代の数学の文化の様子は 世界的に見ても特徴的でまれなものではないだろうか。 背景には永く続いた平和があり、 ある種の十分なゆとりの表れと言えるのではないだろうか。 人間、やらなければならないことが少なくなれば、数学などをやるほかに やることがなくなることは 相当に真実ではないだろうか。 実際、数学のように 実際的には、何の役にも立たないように思われる抽象的な世界に浸っていられるのは 十分な余裕の表れではないだろうか。 仕事や実益的な利益に結び付かないだけに、好きなことを考えるという要素が強い。 - ここであるが、逆に、人間の一面として 結構本質的な、競争心や優越感を満足させるための数学は 歴史的にも数学を進めてきた原動力になっていることは 否めない。
現代でも、有名なまたは難しい問題が解けたとか、数学者の才能が強調されるのが 数学界の話題の中心になりがちである。 - 確かに数学界には想像もできないような才能の持ち主が多い。 最も優秀な数学者たちが、 人類の名誉にかけて挑戦しているのは 結構多いのでは ないだろうか。― 不可能、そんなことは、人類の名誉にかけて許せない、と感じた。
戦場でも数学をやっていた数学者の心情は、そこはどうなっているかとの、真理の追究の激しい情念 ではないだろうか。
それで、現代は 数学が難しく、高度化してしまい、お互いにお互いの研究状況ばかりではなく、研究課題の意味づけや位置づけさえ想像すらできないような形相が多いといえるのではないだろうか。さらに 評価、評価の世界的な流れの中で、研究は高度化、細分化し、繊細で、末梢的な形相も表れているといえるのではないだろうか。 大事な動機と目標を見失って、進んできた先をただ夢中で発展させている研究課題が多いと言える。 それで、その関係専門家でさえ、興味を失い、まして研究の教育や社会的への影響や貢献の意識さえ薄くしているのでは ないだろうか。
研究と教育の乖離、研究と社会の乖離、数学が大衆と乖離してしまい、数学の文化的な享受の要素は 数学界全体として 驚くほどに小さい状況ではないだろうか。 数学の研究成果などは 一般の話題になることはほとんどなく、初等数学のカリキュラムの研究による変更なども殆どなく、基礎数学は既に確立して 変わりようがないように考えられているのではないだろうか。
江戸時代、趣味のように和算に取り組んでいた世相が うらやましく感じられる。 多くの人が美しい数学の結果を発見して交流し、楽しむ社会である。
このような観点から、初等数学である、 ゼロで割ることの 新しい数学、ゼロ除算は 新奇な世界で、みんなで新しい結果を発見でき、大いに楽しめる数学として 良い分野、課題ではないだろうか。 みんなで楽しめる数学の関心を促したい。小林龍彦先生の和算の解説と一緒に同じサイトで解説を続けているので参照して頂きたい。
興味・関心を起こさせる例として 勾配に関する話題を 声明431 から取り挙げたい:
今日、2018.6.3.15時ころ、あるテーブルで 6人で 食事をとっていた。隣の方が、大工さんだというので、真直ぐに立った柱の傾きは いくらでしょうかと少し説明して 問いました。 皆さん状況は 良く理解されていましたが、65歳くらいの姉妹 御婦人、石原芳子さん、清水きみ子さんが、ゼロじゃない? と結構当たり前のように おっしゃったのには 驚き、感銘を受けました。ゼロ除算から導かれた y軸の勾配がゼロは 相当に 感覚的にも当たり前であることが 分かります。 発見当時、妻と息子に聞いた時も そうでした。真直ぐに立った 電柱の勾配は ゼロであると 言いました。これは 当たり前ではないでしょうか。所が 現代数学は 曖昧になっていて、分からない、不定のような 扱いになっています。おかしいですね。世界史の恥にならないでしょうか?
発見当時20年以上の友人ベルリン大学教授に ジョーク交じりに問うたところ、y軸の勾配は 右から近づけばプラス無限大、左から近づけばマイナス無限大で y軸自身の勾配は 考えられないとなっているという(記録No.-1:2015.9.17.05:45、No.-2:2015.9.18.19:15.)。
原点から出る直線の勾配で 考えられない例外の直線が存在して、それがy軸の方向であるということです。このような例外が存在するのは 理論として不完全であると言えます。それが常識外れとも言える結果、ゼロの勾配 を有するということです。この発見は 算術の確立者Brahmagupta (598 -668 ?) 以来の発見で、 ゼロ除算の意味の発見と結果1/0=0/0=0から導かれた具体的な結果です。
それは、微分係数の概念の新な発見やユークリッド以来の我々の空間の認識を変える数学ばかりではなく 世界観の変更を求める大きな事件に繋がります。そこで、日本数学会でも関数論分科会、数学基礎論・歴史分科会、代数学分科会、関数方程式分科会、幾何学分科会などでも それぞれの分科会の精神を尊重する形でゼロ除算の意義を述べてきました。招待された国際会議やいろいろな雑誌にも論文を出版している。イギリスの出版社と著書出版の契約も済ませている。
2014年 発見当時から、馬鹿げているように これは世界史上の事件であると公言して、世の理解を求めてきていて、詳しい経過なども できるだけ記録を残すようにしている。
これらは数学教育・研究の基礎に関わるものとして、日本数学会にも直接広く働きかけている。何故なら、我々の数学の基礎には大きな欠陥があり、我々の学術書は欠陥に満ちているからである。どんどん理解者が 増大する状況は有るものの依然として上記真実に対して、数学界、学術雑誌関係者、マスコミ関係の対応の在り様は誠におかしいのではないでしょうか。 我々の数学や空間の認識は ユークリッド以来、欠陥を有し、我々の数学は 基本的な欠陥を有していると800件を超える沢山の具体例を挙げて 示している。真実を求め、教育に真摯な人は その真相を求め、真実の追求を始めるべきではないでしょうか。 雑誌やマスコミ関係者も 余りにも基礎的な問題提起に 真剣に取り組まれるべきでは ないでしょうか。最も具体的な結果 y軸の勾配は どうなっているか、究めようではありませんか。それがゼロ除算の神秘的な歴史やユークリッド以来の我々の空間の認識を変える事件に繋がっていると述べているのです。 それらがどうでも良いは おかしいのではないでしょうか。人類未だ未明の野蛮な存在に見える。ゼロ除算の世界が見えないようでは、未だ夜明け前と言われても仕方がない。―――
ゼロ除算は、多くの場面に現れているので、いろいろ探して、お互いに楽しめれば幸いです。発見されたら、多くの具体例のように登録して、記録に残していきたい。良いものは当然、論文に載せたり、著書に採用したい。 素人でも数学の研究に参加できる稀なる課題であり、稀なる機会ではないだろうか。皆さんも新しい発見は、如何でしょうか。 公表のいろいろな具体例を参照して下さい。驚く程近くに、簡単にゼロ除算が現れていることを知るでしょう。とても考えられないと思われてきたことが、実は至る所に現れていたと言える。それらは、さらに凄い世界に通じている。
以 上
Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, Vol.7, (2018), Issue 2, pp.44-49 APPLICATIONS OF THE DIVISION BY ZERO CALCULUS TO WASAN GEOMETRY HIROSHI OKUMURA AND SABUROU SAITOH
再生核研究所声明 450(2018.8.22): 水前寺清子様に呼応して - 雄たけび
雄たけびとして、谷亮子柔道選手の金メダル獲得の際の満面喜びのシーン、北島康介水泳選手の金メダル獲得の際の発言、超気持良いなどの叫びが思い出される。下記の歓喜、凄い感銘をうけて、呼応する形で 湧いてきた情念を思いのままに表現したくなった。
(水前寺清子様、坂本冬美様、それに 皆さん、歌 素晴らしかった。 伊東さんの紹介も 味わいが有りますね。素晴らしい日本の歌:NHK 新BS 日本の歌、 素晴らしい。日本の歌謡界のレベルは 高いですね。 ― 雄たけび: 雄叫び ・ 叫び ・ 怒号 ・雄 嘶き ・ 絶叫 ・ 雄たけび ・ ときの声 ・ 鬨の声 ・ 勝ちどき ・ 歓声 ・ 喚声 ・ 叫び声)。
清子様の歌詞に 男は、泣いてはいけない、ほれなきゃいけない、天下を取れ と凄い言葉がある、まさか数学で天下を狙うことは 想像もできない程に凄い天才や秀才たちの集まりの世界、能力も足りなく小さな存在である立場では思いもよらないことと発想するだろう。ところが世には 偶然やまぐれ当たりがあるから、面白い。それは、一般の方からの質問 100/0 の意味を問われて 真面目に深く考えて、偶然に発見したものである。いわゆるゼロ除算、ゼロで割ることを考える、古い歴史をもつ神秘的な問題に対する あまりにも簡単な発見である。それが、アリストテレス、ユークリッド以来の空間の発見に繋がり、初等数学全般の修正を求めているから、 天下取りより はるかに愉快な事件ではないだろうか。 世界の初等数学全般を変更して、20億人以上が理解して 新しい数学、世界の出現に驚嘆するだろう。内容は簡単に 真直ぐに立った電柱の勾配は、y軸の勾配はゼロであると述べられる。 数式で表現すれば、
1/0=0/0=z/0= \tan(\pi/2)=0
と簡潔に述べられる。簡単な関数y=1/xの原点x=0における値はゼロである。これはゼロと無限大の微妙な関係を捉えている。それは人生とは何かという問いに対して 新しい世界観を示している。またゼロ除算の歴史は 人間とはどのようなもので、人間が如何に独断と偏見に満ちた存在で、人間の愚かさを良く示している。数学的な内容について、次を追記して置こう:
再生核研究所声明 442(2018.8.10): ゼロ除算研究の大義と研究協力へのお願い
一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
○ 堪らなく楽しい数学-ゼロで割ることを考える。
ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。
最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。
割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。
そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。
この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。
次も参照:
再生核研究所声明 431(2018.7.14): y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界?
再生核研究所声明 437 (2018.7.30) : ゼロ除算とは何か - 全く新しい数学、新世界である
再生核研究所声明 438(2018.8.6): ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 の誤解について
以 上
0 件のコメント:
コメントを投稿