2018年4月26日木曜日

東大の佐々田槙子准教授、数学は楽しいと発信

東大の佐々田槙子准教授、数学は楽しいと発信 

お湯に水を混ぜるとぬるくなる。中にいる大量の水分子はバラバラに動いているのに、なぜか全体では秩序だった動きになる。東京大学准教授の佐々田槙子(33)は、ミクロの世界とマクロの世界のつながりを、数学的に証明して功績をあげてきた。研究のかたわら、数学に対する誤解や偏見を解きたいと、女子をターゲットにさまざまな活動をしている。
 湯に水、コーヒーにミルク、何度混ぜても必ず同じ結果になる。水分子ひとつひと…https://www.nikkei.com/article/DGXMZO29812370V20C18A4X90000/

とても興味深く読みました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所

再生核研究所声明327(2016.10.18)  数学教育についての提案
次で、数学教育の重要性、効用性について触れている:

再生核研究所声明313(2016.08.01) 良い数学教育の推進を
― 数学を通して、人類が交流でき、世には道理、秩序が 存在すると理解できるだろう。分かり易いスポーツを通して、ドラマを見て、芸術を通して理解するは 世に多いが、数学の効用をここでは強調したい。道理、秩序に対する認識には 数学の効用は大きく、上記 公正の原則の理解にも 大きく寄与するのではないだろうか。数学教育の充実を国際的な視点で提案したい。その留意点を纏めて置きたい:
1) 世には共通の論理があることを理解し、論理的な思考を学習する。
2) 数学の論理的な面には、美しさとuniverseの、世の秩序を述べていることを学ぶ。
3) 非ユークリッド幾何学の出現過程を良く学び、真理を追求する精神感情と論理の関係を学ぶ。批判精神、理性、客観性について学ぶ。予断と偏見、思い込み、囚われやすい人間の精神を掘り下げる。
ここで、数学教育の充実とは、いわゆる数学の学力、問題解決に重点をおいた従来の学習ではなく、上記のような数学教育を通して身に付く数学の精神に重点をおいた教育である。他方数学の学力を付けることに偏りすぎたり、学力を競争させたりして 世に多くの数学嫌いな人たちを育てていることを大いに反省したい。数学の美しさ、楽しさを教えることが第一であると心がけなければならない。
数学愛好者の増大は かつて和算が広く民衆に普及していたように、環境にも優しく、人間の修行にも、精神衛生上も、また創造性を養い、考える力を育成するにも大いに貢献するのではないだろうか。囲碁や将棋、歌会、俳句会など良い趣味集団を構成しているが、数学愛好者クラブなど大いに進められるべきではないだろうか。新聞やテレビ、マスコミ、週刊誌などでもどんどん話題を取り上げ、また奨励されるべきではないだろうか。社会の浄化と低俗化防止にも貢献するのではないだろうか。―

と述べた。古くはプラトン学派の門に、幾何学知らざる者この門をくぐるべからず、ナポレオンが軍隊を強くするには数学の教育が大事であると述べていることや、現中国政府の数学重視の姿勢も注目される。
ここでは、明確な提案が閃いたので纏めて置きたい。まず現状の分析と問題であるが、数学は選別、能力を評価する重要な科目になっていて、受験勉強の強い枠に縛られてカリキュラムは相当に厳格に範囲が定められている。そのため限られた範囲での特訓の要素が強く、現実には理想的な教育の有り様からの乖離が甚だしい状態と言える。標語的には、ゆっくり面白いところを追求しようとすれば、そんなことでは、時間内に解答できない、そのようなものは型として、このように対応すれば良いと、薄っぺらな教育内容になり、多くの場合才能ある学生の みずみずしい知的好奇心 を失なわせ、薄っぺらな学習で数学そのものを嫌う学生を多く育てている現実があると考えられる。これは創造性や好奇心を育てる教育と いわゆる学力をつけるための勉強の乖離の問題である。さらに顕著な事実として、高校までの数学と大学での数学の大きな乖離は 相当に広く認められる現象ではないだろうか。多くの高校生は、大学に入って、数学とはそんなに広く、深く、雄大なものであるかと知って驚くのではないだろうか? また、教育現場の感じも相当に違う感じを受けるだろう。
― このような乖離は、研究成果と学部教育の内容についても言えることに注意しておきたい ―。
背に腹は変えられない、受験勉強は無視できない現実であるから、この問題を改善する具体的な提案として、例えば、週1時間とか、月1時間、カリキュラムにとらわれない数学の時間を用意して、カリキュラムに関係する素材や、新しい話題、面白い歴史的な話題から題材をとり、本来数学の教育に求められるような方向での教育を行うようにする。このような時間は、先生の新鮮な研究、研修にも繋がる面があって 先生の柔軟な精神の涵養にも良いのではないだろうか。さらに視野を広げるためにも、いろいろな講演会の企画なども良いのではないだろうか? 提案したい。数理科学の文化の裾野を広げる努力をしたい。近年は教育・研究環境の厳しさと専門の深さ、困難さで、専門的に深くなりすぎて、数理科学など幅の広さや基礎への関わりが薄くなっているように感じられる。その様な事情を反映させて、教育が疎かになる傾向にもなっているのではないかと危惧される。成果が数字に表されるような貧しい教育である。

数学の教育については、下記も参照:

再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明283 (2016.2.8)  受験勉強が過熱化した場合の危惧について
再生核研究所声明260 (2015.12.07) 受験勉強、嫌な予感がした ― 受験勉強が過熱化した場合の弊害
再生核研究所声明 187 (2014.12.8)工科系における数学教育について                 
以 上

再生核研究所声明 422(2018.3.27): 数学界の歴史的な恥と恥の上塗り ー ゼロ除算の見落とし と 固定観念

ゼロ除算発見4周年を契機に、結構内外の意見を広く求め、日本数学会2018.3.18(東大駒場)でも真正面から問題を明らかにした。関係分科会にメーリングリストを用いて、3月15日群馬大学での公開の研究集会を案内し、論理の展開、認識の適否を検証する形で、予告し問題点を明らかにして研究集会と学会に望んだ。
案内は結構刺激的なものであったと見られよう:
メーリング登録者各位(2018.2.14):
下記のように研究会を企画して頂けることになりましたので、ご案内します。ゼロ除算は別格慎重に研究を進めていますが、次のように表明している認識、その是非などを検証したいと思っています。何でもご意見など頂ければ誠に幸いです:
複素解析学では、無限遠点はゼロで表されること、円の中心の鏡像は無限遠点ではなくて中心自身であること、ローラン展開は孤立特異点で意味のある、有限確定値を取ることなど、基本的な間違いが存在する。微分方程式などは欠陥だらけで、誠に恥ずかしい教科書であふれていると言える。 超古典的な高木貞治氏の解析概論も確かな欠陥が出てきた。勾配や曲率、ローラン展開などに、コーシーの平均値定理さえ進化できる。
しかしながら、奥村博氏の影響を受けて、現在のところユークリッド幾何学への影響が大きいと言えます。我々の空間の認識はアリストテレス、ユークリッド以来の変更が求められている。
敬 具
メーリング登録者各位(2018.3.6):
下記のように研究集会を企画して頂けることになりましたので、ご案内(要旨付)します。ゼロ除算の研究は別格慎重に研究を進めていますが、次のように表明している認識、その是非などを検証したい。何でもご意見など頂ければ誠に幸いです。また、興味、関心を抱いて頂けそうな方に転送などして頂ければ幸いです。
どうぞ宜しくお願いします。 敬具
第1回 ゼロ除算研究集会のご案内
下記のように研究集会を開催しますので、ご案内致します。
日時: 2018.3.15(木曜日).11:00 - 15:00
場所: 群馬大学大学院 理工学府
概要: 始めにゼロ除算の全体について、齋藤三郎群馬大学名誉教授から30分くらい 総合的な報告を受けて、その後、討論を重視する形で進める。昼食を挟んで、討論し、最後に 今後の研究活動について検討する。
参加希望者は、開場の準備、プログラムの検討上 下記にメールにて、届けて下さい:
尚、ゼロ除算の研究状況は、
数学基礎学力研究会 サイトで解説が続けられています:http://www.mirun.sctv.jp/~suugaku/
また、ohttp://okmr.yamatoblog.net/ に 関連情報があります。
(後援:数学基礎学力研究会、NejiLaw、再生核研究) 
 第1回ゼロ除算研究集会基調講演要旨
(日時:2018.3.15(木曜日) 11:00 - 15:00 場所群馬大学大学院 理工学府)
ゼロで割る問題 例えば100/0の意味、 ゼロ除算は インドで628年ゼロの発見以来の問題として、神秘的な歴史を辿って来ていて、最近でも大論文がおかしな感じで発表されている。ゼロ除算は 物理的には アリストテレスが 最初に不可能であると述べていると専門家が論じていて、それ以来物理学上での問題意識は強く、アインシュタインの人生最大の関心事であったという。ゼロ除算は数学的には 不可能であるとされ、数学的ではなく、物理学上の問題とゼロ除算が計算機障害を起こすことから、論理的な回避を目指して、今なお研究が盛んに進められている。
しかるに、我々は約4年前に全く、自然で簡単な 数学的に完全である と考えるゼロ除算を発見して現在、全体の様子が明かに成って来た。そこで、ゼロ除算を歴史的に振り返り、我々の発見した新しい数学を紹介したい。
まず、歴史、結果と、結果の意義と意味、を簡潔に 誰にでも分かるように解説したい。
簡単な結果が、アリストテレス、ユークリッド以来の 我々の空間の認識を変える、実は新しい世界を拓いていること。それらを実証するための 具体例を沢山挙げる。我々の空間の認識は 2000年以上 適切ではなく、したがって 初等数学全般に欠陥があることを 沢山の具体例で示す。
ゼロ除算は新しい世界を拓いており、この分野の研究を進め、世界史に貢献する意志を持ちたい。
尚、ゼロおよび算術の確立者 Brahmagupta (598 -668 ?) は1300年以上も前に、0/0=0 と定義していたのに、世界史は それは間違いであるとしてきた、数学界と世界史の恥を反省して、世界史の進化を図りたい。
以 上
これらの意図はイギリスからの著書出版計画が急速に進み、内容が現代数学の初歩の欠陥を広く指摘し、現在の教科書、学術書の変更を求めているので、慎重に、慎重に対応したいということであった。上記サイトで述べられている要点をまず復習して置きたい。
ゼロ除算 0 / 0 = 0 は 算術の創始者、ゼロの発見者 Brahmagupta (598 -668 ?) によって定義されていたにも関わらず、それは間違いであるとして1300年を超えて続いており、さらに、新たな説、論文が出版されている実におかしな状況にある。しかるに我々は ゼロ除算は既に当たり前であるとして、沢山の証拠を掲げて解説、説得を続けているが、理解は着実に進んでいるにも関わらず、理解は深くはなく、遅々として夜明け前のぼんやりしているような時代であると言える。数学者は、真実に忠実でなければならないのに、数学の研究では、論理には、感情や私情、予断、思い込みを入れてはならないのに、それが、数学の精神であるはずなのに かえって、数学者が予断と偏見、私情に囚われている状況が皮肉にも良く見える。 それは、ゼロ除算の理解が、素人の方の方が理解しやすい状況に現れている。 ― 数学は 絶対的に 厳格な論理でできているはずであるから、基礎が揺るぐはずがないとの信仰、信念を有しているためであろう。しかしながら、人間精神の開放と自由を求めて、非ユークリッド幾何学の出現から、人は大いに学ぶべきではないだろうか。 絶えず、人は何でも疑い、 我は存在しているか と 問うべきである。 ― 人間存在の意義は 真智への愛にある。
ゼロ除算の歴史は、数学界の避けられない世界史上の汚点に成るばかりか、人類の愚かさの典型的な事実として、世界史上に記録されるだろう。この自覚によって、人類は大きく進化できるのではないだろうか。 ― 汝自らを知れ、というソクラテスの言葉は何を意味するだろうか。
そこで、我々は、これらの認知、真相の究明によって、数学界の汚点を解消、世界の文化への貢献を期待したい。
ゼロ除算の真相を明らかにして、基礎数学全般の修正を行い、ここから、人類への教育を進め、世界に貢献することを願っている。
ゼロ除算の進展には 世界史がかかっており、数学界の、社会への対応をも 世界史は見ていると感じられる。 恥の上塗りは世に多いが、数学界がそのような汚点を繰り返さないように願っている。
ゼロ除算は 不可能であるとの言明によって数学的には問題は永く封印されてしまった。 しかし、考えて見れば奇妙な事であった。アインシュタインや多くの物理学者が本質的な問題として考察を続けていたばかりか、ゼロ除算回避を意図して、計算機関係者や数学愛好者がともに真摯に追求してきたが、奇妙な議論を世界的に行っていた。 約20名くらいの海外の関係者と交流してきたが、少年期からあるいは何十年も空しい努力をしてきた者がいる。膨大な空しい努力に数学者の責任の感情が湧いて来る。そればかりか、数学全般の欠陥と我々の空間の認識がユークリッド以来おかしい様は、既に歴然であり、世の数学、世界観は天動説のように基本的な間違いが存在する。
そもそも数学は、不可能性に挑戦して、次々と概念を発展させ、可能ならしめてきた輝かしい歴史を有するが、ゼロ除算は盲点として、世界史に汚点を残してきてしまったと言える。いくら何でも算術の確立者の定義を無視して1300年を越えてそれを間違いであるとしてきた事実は、あまりにも酷い歴史として反省させられる。
ゼロ除算は、発見されてまだ4年、今後大きな発展が行われて、現代初等数学の形相は相当に変化して、ゼロ除算発見は世界史上の画期的な事件として記録されるだろう。その歴史の大義を受けて、世界の数学界は 面目一新を図り、数学界の信頼を回復すべきである。
以 上

再生核研究所声明 421(2018.3.26): 東京大学の在りようについての危惧
もちろん、このような発想は、不遜でありおこがましいとも言える。しかしながら、そのように発想するならば 再生核研究所声明そのものも 大いにそのような類と見なせよう。 真実のため、より良い世の在りようを求めて 自由に所見を述べているものである。今回、幼き頃より別格の才能を有する人の東京大学入学と 春の日本数学会(駒場)に出席して思い湧いた存念を述べて置きたい。これは東京大学に入学され、進んでいく人に ある愛を込めて言及したい。
兼ねてより特殊な才能もつ者の教育について関心を抱いてきた:
再生核研究所声明 9 (2007/09/01): 天才教育の必要性を訴える
再生核研究所声明 60  (2011.05.07) : 非凡な才能を持つ少年・少女育成研究会
まず、危惧されることは、あまりにも受験のいわば特訓に 長期間束縛されて、精神の、心身の発達に悪い影響がないかということである。聞くところによれば、優秀な者は東大の入試など簡単で 問題にならない、どのような入試でも簡単に抜けられ、気にすることはないというような意見がある。しかしながら、そうであろうか。入試が長期間同じような制度で行われてきたこともあって、入試には相当に専門的な特訓が 要求され、相当な荷重になっているのではないだろうか。いわゆる名門大学への入学者が特殊な高校卒業者に限られている傾向はそのような事情を示していると考えられる。優秀な者が高校2年生くらいで既に合格のレベルに達していて、宙ぶらりんな空回りの勉強をさせられていたという不満を抱きながら、入試の課題で疲れて新鮮な 心弾むみずみずしい精神を歪めている現実がうかがえる。― 学校は 暇で退屈だったとは才能ある者の間でよく聞く話しである。
合格して、学部、大学院などに進めば、秀才達の間の競争も激しくなり、研究職に付くような場合、先の長さと厳しさに 振り返っても 重苦しい気持ちにさせられる。入学祝いの気持ちよりも先の長さ、厳しさを感じてしまう。特に優秀な者を 型にはまった長い学習期間として縛ってしまう状況は 上記天才教育の観点からも大いに危惧される。最近、30年前に予想していた問題を解いたと言ってきた数学者がいるが、何と33歳で北京大学の教授になっていたこと知って、唖然とさせられた。永い学習期間は才能を殺してしまい、才能を活かせない状況を齎すのではないだろうか。どんどん才能を伸ばす体制を日本でも作れないものであろうかと考える。
現実には、入試は避けられず、当然としても、あまりに過熱にならないように、学生時代に 型にはまった勉強のやりすぎ に陥らないように その様な配慮が全体的に大事ではないだろうか。相当に自由を尊重することは 創造性をはぐくむ基礎ではないだろうか。  
学生さんは、いたずらに競争などの意識を持ち過ぎず、自分をしっかりと捉え、自我の確立や人生や世界への思いを 深めて頂きたい。小学校の恩師の言葉を贈って、栄えある大学への入学を祝したい:
喜び生きる人生の勝利者たれ。
実は、人生は とてつもなく永いとも言えるものである。人生は簡単ではない。
思えば、この声明の心は、東京大学は 天才青年や日本の秀才たちの才能を活かせるだろうかという思いにある。日本の教育体制は 大丈夫だろうか。変な教育に陥ってはいないだろうか?
以 上

0 件のコメント:

コメントを投稿