Girolamo Cardano, si Pengagas Bilangan Imajiner
Nama matematikawan yang pernah dianggap menista agama ini menjadi nama perusahaan teknologi kriptokurensi.
tirto.id - Semakin dekat dengan ajal, semakin banyak pula tragedi menimpa Girolamo Cardano. Pada 1570, Cardano ditangkap Inkuisisi Gereja Katolik yang dipimpin Paus Pius V. Meskipun Cardano bungkam soal rincian dakwaan yang ditimpakan kepadanya, namun kemungkinan besar dia didakwa sebagai penista agama.De Subtilitate yang disusunnya membandingkan agama Kristen, Yudaisme, dan Islam secara objektif. Sedangkan dalam De Immortalitate, laki-laki yang lahir pada 1501 itu menulis soal keabadaian dan kefanaan jiwa. Cardano pun sempat menulis soal horoskop Yesus Kristus dan menyampaikannya kepada Paulus III—paus sebelum Pius V. Selain dianggap menista, tulisan macam itu dianggap bagian gerakan Reformasi Protestan yang gencar ditekan Paus Pius V.
"Horoskop tentang Kristus dipandang banyak orang di pengadilan era Paus Pius V sebagai upaya merendahkan Pencipta menjadi seperti ciptaan-Nya: jika bintang-bintang bisa meramal kehidupan Kristus, berarti Tuhan tidak bertindak sesuai kehendak-Nya sendiri," sebut Michael Brooks, seperti dilansir New Scientist.
Cardano mendekam di penjara selama tiga bulan. Setelahnya, Cardano menjadi tahanan rumah, dilarang mengajar, menerbitkan buku, dan menceritakan alasan penangkapannya. Bersamaan dengan itu, dia pun memusnahkan 130 buku dan 111 manuskrip karyanya. Enam tahun kemudian, Cardano meninggal, tepat pada 20 September 1576.
Cordano dan Gagasan Bilangan Imajiner
Seperti tragedi yang merangsek di akhir hayatnya, nama Cordano pun amat jarang disebut dalam buku-buku pelajaran anak SMA atau kuliah (di Indonesia). Buku-buku seolah cukup menyitir Leonardo da Vinci atau Leonardo Fibonacci, dua saintis anasir Renaisans Italia yang hidup sezaman Cardano.Jika tidak digunakan sebagai nama perusahaan platform cryptocurrency "Cardano", nama yang diserap dalam bahasa Inggris menjadi Jerome Cardan itu mungkin bakal terkubur dan tidak pernah dikenang lagi saat ini.
Pada kenyataannya, pena dan tinta Cardano tidak hanya didedikasikan untuk menulis buku-buku agama, astrologi, atau horoskop belaka. Kontribusi Cardano, terutama dalam bidang matematika, signifikan betul.
Markus Fiers dalam Girolamo Cardano 1501 - 1576 (1983) mengatakan Cardano meluncurkan buku berjudul Ars Magna pada 1545. Dalam buku itu, Cardano menjabarkan metode ampuh penyelesaian persamaan pangkat tiga dan empat. Gagasan Cardano, yang diilhami hasil kerja dua koleganya: Scipione del Ferro dan Tartaglia, itu istimewa. Sebelumnya, orang-orang baru bisa menghitung penyelesaian persamaan kuadrat (pangkat dua).
Selain itu, Ars Magna juga menjadi bukti bahwa Cardano adalah orang Eropa pertama penulis susunan bilangan yang saat ini disebut bilangan imajiner atau kompleks. Dalam buku itu, Cardano menulis (5+√−15) dan (5−√−15) sebagai hasil suatu penyelesaian persamaan kuadrat.
Dalam matematika, perkalian sebuah bilangan dengan sejumlah bilangan itu sendiri disebut operasi pangkat (kerap disimbolkan dengan tanda ^), misalnya 6x6 = 6^2 = 36.
Setiap operasi pun memiliki operasi-balikan. Untuk operasi pangkat dua, operasi-balikannya adalah akar (disimbolkan dengan √).
Karena bilangan negatif dikali bilangan negatif menghasilkan bilangan positif, operasi pangkat 2 untuk bilangan negatif selalu menghasilkan bilangan positif, misalnya -6x-6 = -6^2 = 36.
Dengan begitu, √36 pun memiliki dua nilai, 6 atau -6.
Pertanyaannya, jika operasi pangkat dua selalu menghasilkan bilangan positif, apakah operasi √-36 memiliki nilai?
Untuk menjawab itu matematikawan menempuh jalan berliku. Rafael Bombelli mengenalkan notasi √-1 untuk memecah bilangan imajiner, misalnya √-36 menjadi √36√-1, melalui buku l'Algebra (1572). Dua abad kemudian, Leonhard Euler memopulerkan penggunaan simbol i untuk merujuk √−1 sehingga √-36 dapat ditulis 6i.
Sebagai sebuah sistem, bilangan imajiner mulai menemukan bentuk aljabarnya ketika pada 1831 matematikawan asal Irlandia William Rowan Hamilton mengembangkan konsep pasangan terurut bilangan asli untuk mendefinisikan bilangan imajiner. Dengan konsep ini, bilangan 1+6i cukup ditulis (1,6).
Bilangan imajiner disebut bilangan kompleks oleh Carl Friedrich Gauss, kemudian Augustin-Louis Cauchy mengonsepkan secara utuh himpunan bilangan kompleks pada 1847.
"Kami secara penuh menanggalkan simbol √−1, meninggalkannya tanpa penyesalan karena kami tidak tahu apa yang ditunjukkan pun makna apa yang mesti diberikan kepada simbol tersebut," ujar Cauchy, seperti dilansir "A Short History of Complex Numbers" (2006) yang disusun Orlando Merino.
Jadi, √-36 bukan lagi momok. Ia sudah diserap menjadi bagian himpunan bilangan kompleks dengan nilai 6i.
share infografik
Bilangan Imajiner yang Diolok-olok
Dibanding kawan-kawan bilangan lainnya, bilangan imajiner (atau kompleks) ini memang tampak tiada gunanya dalam kehidupan sehari-hari. Ia juga sulit dibayangkan keberadaannya secara empiris.Filsuf Perancis abad ke-17 Rene Descartes sebenarnya adalah orang yang pertama kali menggunakan istilah imajiner untuk menyebut √−1. Dia mengatakan itu melalui sebuah risalah berjudul "Discours de la method pour bien conduire sa raison et chercher la verite dans les sciences" yang terbit di Leiden pada 1673.
Descartes mengatakan, "Untuk setiap persamaan, seseorang dapat mengimajinasikan sebanyak mungkin akar [setara dengan derajatnya], namun dalam banyak kasus tidak ada jumlah akar yang sesuai dengan yang dibayangkan seseorang."
Meski berjasa 'menemukan' istilah bilangan imajiner, kalimat Descartes tersebut sebenarnya bermaksud mengolok. Dengan berkata seperti itu, filsuf yang terkenal dengan adagium aku berpikir maka aku adaitu, mengatakan bilangan imajiner hanya bisa dibayangkan, tapi wujudnya, terutama perannya sebagai akar persamaan dan posisinya dalam diagram bilangan (Cartesius), tidak diketahui.
Namun, jauh setelah Descartes mati karena pneumonia, para matematikawan mengembangkan banyak metode analisis bilangan kompleks. Sebagaimana disebut Brooks, analisis tersebut berguna dalam memodelkan arus dan tegangan listrik dalam sirkuit elektronik.
Analisis bilangan kompleks juga mempermudah para ilmuwan untuk menghitung pergerakan osilasi dan gelombang yang digunakan dalam perangkat komunikasi, mulai dari telepon hingga wifi.
Bersama dengan teori probabilitas, bilangan imajiner juga berguna dalam mengulik persamaan teori kuantum Schrodinger. Sementara itu, Alexander V. Avdeev dan kawan-kawan menggunakan analisis bilangan kompleks untuk menakar posisi sumber tsunami.
Baca juga artikel terkait SAINS atau tulisan menarik lainnya Husein Abdulsalam
(tirto.id - hsa/msh)https://tirto.id/girolamonbspcardano-si-pengagas-bilangan-imajiner-cFnx
とても興味深く読みました:ゼロ除算の発見4周年超えました:
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 409: Various Publication Projects on the Division by Zero\\
(2018.1.29.)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
}
\date{\today}
\maketitle
The Institute of Reproducing Kernels is dealing with the theory of division by zero calculus and declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristoteles (BC384 - BC322) and Euclid (BC 3 Century - ), and the division by zero is since Brahmagupta (598 - 668 ?).
In particular, Brahmagupta defined as $0/0=0$ in Brhmasphuasiddhnta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we showed that his definition is suitable.
For the details, see the references and the site: http://okmr.yamatoblog.net/
We wrote two global book manuscripts \cite{s18} with 154 pages and \cite{so18} with many figures for some general people. Their main points are:
\begin{itemize}
\item The division by zero and division by zero calculus are new elementary and fundamental mathematics in the undergraduate level.
\item They introduce a new space since Aristoteles (BC384 - BC322) and Euclid (BC 3 Century - ) with many exciting new phenomena and properties with general interest, not specialized and difficult topics. However, their properties are mysterious and very attractive.
\item The contents are very elementary, however very exciting with general interest.
\item The contents give great impacts to our basic ideas on the universe and human beings.
\end{itemize}
Meanwhile, the representations of the contents are very important and delicate with delicate feelings to the division by zero with a long and mysterious history. Therefore, we hope the representations of the division by zero as follows:
\begin{itemize}
\item
Various book publications by many native languages and with the author's idea and feelings.
\item
Some publications are like arts and some comic style books with pictures.
\item
Some T shirts design, some pictures, monument design may be considered.
\end{itemize}
The authors above may be expected to contribute to our culture, education, common communications and enjoyments.
\medskip
For the people having the interest on the above projects, we will send our book sources with many figure files.
\medskip
How will be our project introducing our new world since Euclid?
\medskip
Of course, as mathematicians we have to publish new books on
\medskip
Calculus, Differential Equations and Complex Analysis, at least and soon, in order to {\bf correct them} in some complete and beautiful ways.
\medskip
Our topics will be interested in over 1000 millions people over the world on the world history.
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{ms16}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.
\bibitem{ms18}
T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication)
\bibitem{mms18}
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.
\bibitem{msy}
H. Michiwaki, S. Saitoh and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html
\bibitem{mos}
H. Michiwaki, H. Okumura and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces,
International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue 1, 2017), 1-16.
\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of $0$ and $\infty$,
Journal of Technology and Social Science (JTSS), {\bf 1}(2017), 70-77.
\bibitem{os}
H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).
\bibitem{o}
H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International Journal of Geometry.
\bibitem{os18}
H. Okumura and S. Saitoh,
Applications of the division by zero calculus to Wasan geometry.
(Submitted for publication).
\bibitem{ps18}
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.
\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. {\bf 3}1, No. 8. (Oct., 1924), pp. 387-389.
\bibitem{s14}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/
\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182. (Springer) .
\bibitem{s17}
S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).
\bibitem{s18}
S. Saitoh, Division by zero calculus (154 pages: draft): http//okmr.yamatoblog.net/
\bibitem{so18}
S. Saitoh and H. Okumura, Division by Zero Calculus in Figures -- Our New Space --
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.
\end{thebibliography}
\end{document}
List of division by zero:
\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum.
Saburou Saitoh, Mysterious Properties of the Point at Infinity、
arXiv:1712.09467 [math.GM]
arXiv:1712.09467 [math.GM]
Hiroshi Okumura and Saburou Saitoh
The Descartes circles theorem and division by zero calculus. 2017.11.14
L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
T. Matsuura and S. Saitoh,
Matrices and division by zero z/0=0,
Advances in Linear Algebra \& Matrix Theory, 2016, 6, 51-58
Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.
T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication).
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.)
H. Michiwaki, S. Saitoh and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. 6(2015), 1--8. http://www.ijapm.org/show-63-504-1.html
H. Michiwaki, H. Okumura and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces,
International Journal of Mathematics and Computation, 28(2017); Issue 1, 2017), 1-16.
H. Okumura, S. Saitoh and T. Matsuura, Relations of $0$ and $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017), 70-77.
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics).
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182. (Springer) .
再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html
1/0=0、0/0=0、z/0=0
ソクラテス・プラトン・アリストテレス その他
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
私は数学を信じない。 アルバート・アインシュタイン / I don't believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。
ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか
〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか
〔NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか
NHKスペシャル 神の数式 完全版 第4回 異次元宇宙は存在するか
再生核研究所声明 411(2018.02.02): ゼロ除算発見4周年を迎えて
ゼロ除算の論文
Mysterious Properties of the Point at Infinity
Mysterious Properties of the Point at Infinity
Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces
Author: Jakub Czajko, 92(2) (2018) 171-197
WSN 92(2) (2018) 171-197
Author: Jakub Czajko, 92(2) (2018) 171-197
WSN 92(2) (2018) 171-197
0 件のコメント:
コメントを投稿