2018年3月2日金曜日

宇宙が予想以上の速さで膨張している可能性-既存理論での説明不可能

宇宙が予想以上の速さで膨張している可能性-既存理論での説明不可能

宇宙望遠鏡科学研究所(STScI)などの研究チームは、NASAのハッブル宇宙望遠鏡による最新の観測データを用いて、宇宙の膨張速度を精密に計算した。その速度は従来予想されていた値よりもかなり速く、既存の宇宙論では説明がつかないものであることがわかってきたという。宇宙膨張を合理的に説明するための新しい物理学理論が要求されている。研究論文は「The Astrophysical Journal」に掲載された。
  • ハッブル定数の決定に必要な天体までの距離の測定方法を説明したもの
    ハッブル宇宙望遠鏡を用いて宇宙膨張速度(ハッブル定数)の精密測定を行った。画像はハッブル定数の決定に必要な天体までの距離の測定方法を説明したもの。距離決定に利用する天体の数を増やすために観測範囲を従来の10倍に拡大している(Credits: NASA, ESA, A. Feild (STScI), and A. Riess (STScI/JHU))
最新の観測データによる宇宙の膨張速度は、ビッグバン直後の初期宇宙の膨張から予想されていた値を上回っているという。予測値と観測値の不一致を説明するためには何らかの新しい物理学理論が必要になると考えられている。
宇宙の加速膨張に関する研究で2011年にノーベル物理学賞受賞者で今回の研究を主導しているAdam Riess氏(STScIおよびジョンズ・ホプキンズ大学)は「研究者コミュニティーは今、この不一致の意味を理解することに取り組んでいるところだ」とコメントしている。
研究チームは過去6年間、ハッブル宇宙望遠鏡を使って地球からさまざまな銀河までの距離を精査してきた。この測定値は、ハッブル定数(時間の経過とともに宇宙がどれだけの速さで膨張しているかを表す値)の計算に使われる。今回の研究では、分析対象とする天体(ケフェウス型変光星およびIa型超新星)の数が拡大されており、最大でこれまでの10倍という広範囲の天体について調べたという。
欧州宇宙機関(ESA)が運用するプランク衛星による宇宙マイクロ波背景放射(CMB:cosmic microwave background)のデータをもとに、ビッグバン直後(約138億年前の宇宙創成から37万8000年後)の初期宇宙の膨張を観測した先行研究があるが、今回の研究で計算されたハッブル定数は、この初期宇宙の膨張から予想される値を上回っている。2つの値の相違は約9%であり、この値の不一致が偶然の産物である確率は1/5000という低さであるという。
プランク衛星のデータから予想される宇宙の現在のハッブル定数は67km毎秒毎メガパーセクであり、69km毎秒毎メガパーセクよりも速い可能性はないとされてきた。これは1メガパーセク(=330万光年)離れるごとに毎秒67kmだけ速度が加算され、遠くの宇宙ほど膨張速度が上がるという意味である。
一方、今回の研究チームが算定したハッブル定数は、73km毎秒毎メガパーセクとなっている。これはCMBの観測値にもとづく初期宇宙の膨張から予想される現在の宇宙膨張速度の上限値を超えていることになる。
ハッブル宇宙望遠鏡のデータは非常に精密なものであるため、プランク衛星のデータにもとづいて予想した宇宙膨張速度との乖離を測定誤差として片付けるわけにはいかない。Riess氏は「どちらのデータも複数の方法で検証されている。したがって互いに無関係ないくつものミスが連続して起こったのでない限り、この不一致は測定上のミスではなく、宇宙の特性から来ているものである可能性が高い」と説明している。
Riess氏は、プランク衛星とハッブル宇宙望遠鏡のデータが一致しない理由を説明するための仮説をいくつか挙げている。その1つはダークエネルギーに関係するもので、宇宙の加速膨張における加速度が一定ではなく、加速度自体が時間とともに変化するというものである。
もう1つの仮説は、「ステライルニュートリノ」などと呼ばれる未発見の素粒子が存在するというものである。ステライルニュートリノは、ニュートリノ同様に光速に近い速度で動くが、通常のニュートリノのように弱い力での相互作用をせず、重力だけが相互作用の力として働くと考えられている。
さらに別の仮説として、未知の重力源であるダークマターに関するものもある。ダークマターは通常の物質や電磁波と相互作用しないため観測が困難とされてきたが、これまで考えられてきたよりも通常の物質や電磁波との相互作用が強いと仮定するのだという。
いずれの仮説を採用した場合も、初期宇宙の様相が変わるため既存の理論モデルからは矛盾が生じる。矛盾のある理論を使って初期宇宙の観測結果から推定したハッブル定数は誤った値になると考えられ、ハッブル宇宙望遠鏡の観測結果にもとづくハッブル定数とは食い違うことになる。
研究チームはこの問題についてまだ答えを出しておらず、今後も引き続き宇宙の膨張率に関する研究を続けていくとしている。https://news.mynavi.jp/article/20180302-592885/

とても興味深く読みました:ゼロ除算の発見4周年超えました:

再生核研究所声明 420(2018.3.2): ゼロ除算は正しいですか,合っていますか、信用できますか - 回答

ゼロ除算に 興味を抱いている方の 率直な 疑念です。大きな国際会議で、感情的になって 現代の数学を破壊するもので 全く認められないと発言された方がいる。現代初等数学には基本的な欠陥があって、我々の空間の認識は ユークリッド以来の修正が求められ、初等数学全般の再構成が要求されていると述べている。それで、もちろん、慎重に 慎重に対応しているのは当然である。
本来 数学者は 論理に厳格で 数学の世界ほど 間違えの無い世界は無いと言えるのではないだろうか。 実際、一人前の数学者とは、独自の価値観を有し、論理的な間違いはしない者である と考えられているのではないだろうか。2000年を越える超古典的な数学に反した 新しい世界が現れたので、異常に慎重になり、大丈夫か大丈夫かと4年間を越えて反芻して来た(再生核研究所声明 411(2018.02.02): ゼロ除算発見4周年を迎えて)。 そこで、ゼロ除算の成果における信頼性を客観的に 疑念に対する回答として纏めて置こう。これらは、貴重な記録になると考えられる。
まず、研究成果は 3年半を越えて、広く公開している: 
数学基礎学力研究会 サイトで解説が続けられている:http://www.mirun.sctv.jp/~suugaku/
また、ohttp://okmr.yamatoblog.net/  関連情報を公開している
ゼロ除算の研究は、内外の研究者に意見を求められながら共同で進め、12編を越える論文を出版確定にしている。日本数学会では6期3年間を越えて関係講演を行い、成果を発表して来た。 またその際、ゼロ除算の解説冊子(2015.1.14付け)を1000部以上広く配布して意見を求めてきたが、論理的な不備などはどこからも指摘されていない。ここ4年間海外の関係専門家と250以上のメールで議論してきた(ある人がそう述べてきた:2018年2月27日 18:45 Since then I have received about 250 messages from you about it. Unbelievable! :2018年2月27日 18:45)が 論理的な不備は指摘されなく、関係者の諒解(理解)が付いていると判断されている。逆に他の理論については 全て具体的に批判し、良くないと述べている。50カ国200名以上参加の大きな国際会議に 全体講演者として招待され、講演を行い、かつ論文がその会議禄に2編Springer社から出版される。公開していたゼロ除算の総合的な研究著書原案154ページに対して、イギリスの出版社が出版を勧め、外部審査、社内審査を終えて、著書の出版を決定している。
ゼロ除算を裏付ける知見は 初等数学全般から700件を超え、公開している。共著者として論文執筆に参加している人は、代表者以外内外8名である。
以上の状況は ゼロ除算の数学的な信用性を裏付けていると考えるが、如何であろうか。 
以 上


再生核研究所声明 418(2018.2.24):  割り算とは何ですか? ゼロ除算って何ですか - 小学生、中学生向き 回答

ここ2回に亘ってゼロ除算の解説を高校生、中学生向きに解説したので、今回はそれらの前に小学生などを意識して、割り算の意味とゼロ除算の意味を解説したい。
まず、割り算ですが、割り算を最初に考えたのは、アダムとイブで仲良くリンゴを2つに分けたことにあると楽しく表現した人がいます。 10個のリンゴを2人で仲良く分ければ、5個ずつ分けると丁度良いと考えますね。これは10割る2の意味で、割り算とは同じように分けることと考えられます。 10個のリンゴを3人で分ければ、3個ずつ分けると1個余りになると考えれば、10割る3は 3余り1です。 これらを 10/3 = 3 … 1 等と書き、 10を3で割ると商が3で余りは1と表現します。 少し、 難しく、50を13で割るとどうなるでしょうか。 少し考えて、50/13 = 3… 11 となります。 確かめるには、本当に分けた結果が50になるかを確認すればいいですね。 13が 3つあると 39で 11個残りと言っているので、確かに全体で50になるので、結果が正しいことが分かります。
割り算は難しいと 有名な言葉が有りますが、
― 割り算のできる人には、どんなことも難しくない。                     
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。                                                      
ベーダ・ヴェネラビリス(アイルランドの神学者)
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
P199より 

簡単に考える方法があります。50に13が幾つあるかを考えているので、50引く13を繰り返して、 引けるまで、引き算を 繰り返します:
50-13=27、
27-13=14、
14-13=1
1から13は引けませんから、13は3個あるとなって、割り算の商が求まります。 この手順は何時でも決まった方法で必ず答えが得られますので、分かり易く実際、感情や直感、経験、
工夫などが苦手な計算機は割り算の商を計算するときにこのようにして自動的に計算しています。繰り返し引いていくので、繰り返して除いて行きますので、割り算は除算と呼ばれ、 西欧でも中世時代そのようにして計算していたというのです。 除算の名称は素晴らしいですね。
ゼロ除算とは、ゼロで割ることを考えることですから、 50割るゼロをやって見ましょう。
50-0=50
ですから、50はゼロを引いても引いたことにはならず、50/0=0 となるのではないでしょうか?
50のところは何でも結果はゼロだということになります。 ここをそうだと言ったら、1000年や2000年を越える新しい結果であるとなりますから、 大変です。 皆さんゼロで割ってはいけないと教えられてきていて、それが現代数学の定説です。
ところが、ゼロ除算は ある自然な意味で、何でもゼロで割ればゼロであるという数学を発見して ここ4年間研究を続けていますが このような新しい考えは、 数学の基礎と私たちの空間の考えを変える必要があり、大きな影響が有ります。
そこで、次の、中学、高校生ようの解説に進むことが出来ます。
そこに、小学1年生のお友達が出てきますから、面白いですね。
再生核研究所声明 417(2018.2.21):  ゼロ除算って何ですか - 中学生、高校生向き 回答
ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。何事始めが大事ですから、この意味が分かるように 次で詳しく解説されている部分を編集して、分かり易く説明したい:

ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/
前回の声明、再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
それ以前のこととして、今回はより基本的なことを述べたい。
12割る2は6、12割る3は4、12割る4は3、12割る6は2です。 12割る5は、商は2で余りは2で、12割る7は 商は1で余りは5です。これらを、普通、12/2=6,12/3=4,12/4=3,12/6=2 と分数で表現し、後半のように割り切れないときは 余りを表現したり、少数点以下割り算をどんどん 続けて行く場合などいろいろな考え方、表現があります。ここでは、簡単な場合として 自然数、1、2、3、4、、、、 の場合を考えましょう。
割り切れるときには、次の等式が成り立つことが大事です:
2X6=12, 3X4=12, 4X3=12, 2X6=12.
実際、12割る3を考えるとき、12の中に3が いくつ有るかと考え、3に何を掛けたら12になるかと考えるのではないでしょうか。ここには少し難しいところが有って、計算機などは決まった考えしかできないので、12から3を次々に引いて何回引けるかと考えれば、何時でも決まった考え方で割り算の商を求めることが出来ます。前半の考えは掛け算の逆を考えて、後半は引き算を何回やっての考え方ですから、前半の考えには感覚、予想などが必要であって、難しいですが、引き算の繰り返し(除いていく計算、除算)をただやればよいのですから、簡単です。計算機はこのようにして 割り算を実際行っています。
ゼロ除算とは、ゼロで割ることを考えるのですから、上記の場合、割る数、2,3,4,6のところでそれらがゼロだったらどうなるかと考えること、それがゼロ除算です。 ゼロで割ることを考えることです。
掛け算の逆で考える方法では、ゼロに何を掛けてもゼロですから、例えば、100/0は 0Xa=100 を探したいと考えても、0Xa =0 ですから、できない、存在しないということになってしまいます。そこで、現代数学では ゼロで割ってはいけないと教えられています。 数学界では2000年を超えた定説です。問題は、世の中には、分母がゼロになる公式が沢山現れて、分母がゼロになる場合が問題になります。
例えば、理想的な2つの質点間に働く、ニュートンの万有引力F は 2つの質量をm、M、万有引力定数をGとすると、距離をrとすれば
F = G mM/r^2。(r^2は rの2乗の意味)。
rをゼロに近づければ 正の無限に発散するが、rが ゼロに成れば無限大か? 無限大とは何か、数か? その意味が不明であるという点である。
そもそも足し算、掛け算の基礎はブラーマグプタ(Brahmagupta598 – 668?インド数学者天文学者によって、628に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも大事な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな意義、影響とともに明らかにされてきた。しかしながら、 ブラーマグプタは その中で 0 ÷ 0  0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の我々の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と神秘的な問題は、アインシュタインの人生最大の関心であったという言葉に象徴される。

物理学や計算機科学で ゼロ除算は大事な課題であるにも関わらず、創始者の考えを無視し、あるいは軽ろんじて、割り算は 掛け算の逆との 貧しい発想で 間違いを1300年以上も、繰り返してきたことは 実に奇妙、実に残念で、不名誉なことである。創始者は ゼロの深い意味、ゼロが 単純な算数・数学における意味を越えて、ゼロが基準を表す、不可能性を表現する、神が最も簡単なものを選択する、神の最小エネルギーの原理、すなわち、神もできれば横着したいなどの世界観を感じていて、0/0=0 を自明なもの と捉えていたものと考えられる。実際、巷で、ゼロ除算の結果や、適用例を語ると 結構な 素人の人々が 率直に理解されることが多い。ゼロ除算は至るところに見られると言っても良いほどです。
ゼロ除算を発見して議論を広く議論して間もなく、道脇愛羽さん当時6歳と緩まないネジで 有名なお父さん道脇裕氏たちは、3週間くらいで何でもゼロで割ればゼロであるとの驚嘆すべき発見に対して、理由を付けてそれは自明であると述べてきたのは 実に面白いことです。多くの専門家が、2、3年を越えても分からないと言っている経過を見ると本当に驚きです。
100/0 を100 から 0を何回引けるかと考えると、0を引いても100 は減りませんので、引いたとはいえず、減らすという意味で引ける回数はゼロ、したがって100/0=0 そして、余りが100であるとしました。 私たちは、割り算の意味を拡張して、ゼロ除算は拡張された分数の意味、割り算で 何でもゼロで割ればゼロであるという理論を数学的に確立させました。
1300年間も 創始者の考えを間違いであるとする 世界史は修正されるべきである、間違いであるとの不名誉を回復、数学の基礎の基礎である算術の確立者として、世界史上でも高く評価されるべきである。 真智への愛、良心から、熱い想いが湧いてくる。 ― 1300年も前に、創始者によって、0/0 = 0 とされてきたのに それは間違いだとして、現在も混乱しているのは、まずいのではないでしょうか?
できない不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。

内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。高級編は ohttp://okmr.yamatoblog.net/ にあります。
以 上

再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。この意味が分かるまでは、 次には進めませんので、興味があれば、 次で解説されている最初の方を参照してください:
                                                                                                            
ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/
できない不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。

内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。
以 上


再生核研究所声明 411(2018.02.02):  ゼロ除算発見4周年を迎えて
ゼロ除算100/0=0を発見して、4周年を迎える。 相当夢中でひたすらに その真相を求めてきたが、一応の全貌が見渡せ、その基礎と展開、相当先も展望できる状況になった。論文や日本数学会、全体講演者として招待された大きな国際会議などでも発表、著書原案154ページも纏め(http://okmr.yamatoblog.net/)基礎はしっかりと確立していると考える。数学の基礎はすっかり当たり前で、具体例は700件を超え、初等数学全般への影響は思いもよらない程に甚大であると考える: 空間、初等幾何学は ユークリッド以来の基本的な変更で、無限の彼方や無限が絡む数学は全般的な修正が求められる。何とユークリッドの平行線の公理は成り立たず、すべての直線は原点を通るというが我々の数学、世界であった。y軸の勾配はゼロであり、\tan(\pi/2) =0 である。 初等数学全般の修正が求められている。
数学は、人間を超えたしっかりとした論理で組み立てられており、数学が確立しているのに今でもおかしな議論が世に横行し、世の常識が間違っているにも拘わらず、論文発表や研究がおかしな方向で行われているのは 誠に奇妙な現象であると言える。ゼロ除算から見ると数学は相当おかしく、年々間違った数学やおかしな数学が教育されている現状を思うと、研究者として良心の呵責さえ覚える。
複素解析学では、無限遠点はゼロで表されること、円の中心の鏡像は無限遠点では なくて中心自身であること、ローラン展開は孤立特異点で意味のある、有限確定値を取ることなど、基本的な間違いが存在する。微分方程式などは欠陥だらけで、誠に恥ずかしい教科書であふれていると言える。 超古典的な高木貞治氏の解析概論にも確かな欠陥が出てきた。勾配や曲率、ローラン展開、コーシーの平均値定理さえ進化できる。
ゼロ除算の歴史は、数学界の避けられない世界史上の汚点に成るばかりか、人類の愚かさの典型的な事実として、世界史上に記録されるだろう。この自覚によって、人類は大きく進化できるのではないだろうか。
そこで、我々は、これらの認知、真相の究明によって、数学界の汚点を解消、世界の文化への貢献を期待したい。
ゼロ除算の真相を明らかにして、基礎数学全般の修正を行い、ここから、人類への教育を進め、世界に貢献することを願っている。
ゼロ除算の発展には 世界史がかかっており、数学界の、社会への対応をも 世界史は見ていると感じられる。 恥の上塗りは世に多いが、数学界がそのような汚点を繰り返さないように願っている。
人の生きるは、真智への愛にある、すなわち、事実を知りたい、本当のことを知りたい、高級に言えば神の意志を知りたいということである。そこで、我々のゼロ除算についての考えは真実か否か、広く内外の関係者に意見を求めている。関係情報はどんどん公開している。
4周年、思えば、世の理解の遅れも反映して、大丈夫か、大丈夫かと自らに問い、ゼロ除算の発展よりも基礎に、基礎にと向かい、基礎固めに集中してきたと言える。それで、著書原案ができたことは、楽しく充実した時代であったと喜びに満ちて回想される。
以 上


List of division by zero:

\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum.

Saburou Saitoh, Mysterious Properties of the Point at Infinity、
arXiv:1712.09467 [math.GM]

Hiroshi Okumura and Saburou Saitoh
The Descartes circles theorem and division by zero calculus. 2017.11.14

L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

T. Matsuura and S. Saitoh,
Matrices and division by zero z/0=0,
Advances in Linear Algebra \& Matrix Theory, 2016, 6, 51-58
Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.

T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication).

T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.)

H. Michiwaki, S. Saitoh and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. 6(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

H. Michiwaki, H. Okumura and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces,
International Journal of Mathematics and Computation, 28(2017); Issue 1, 2017), 1-16.

H. Okumura, S. Saitoh and T. Matsuura, Relations of $0$ and $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017), 70-77.

S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics).

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182. (Springer) .


0 件のコメント:

コメントを投稿