2018年3月2日金曜日

Africa: Mathematics - Forget Simplicity, the Abstract Is Beautiful - and Important

Africa: Mathematics - Forget Simplicity, the Abstract Is Beautiful - and Important

 
ANALYSISBy Harry Zandberg Wiggins, University of Pretoria
Why is mathematics so complicated? It's a question many students will ask while grappling with a particularly complex calculus problem - and their teachers will probably echo while setting or marking tests.
It wasn't always this way. Many fields of mathematics germinated from the study of real world problems, before the underlying rules and concepts were identified. These rules and concepts were then defined as abstract structures. For instance, algebra, the part of mathematics in which letters and other general symbols are used to represent numbers and quantities in formulas and equations was born from solving problems in arithmetic. Geometry emerged as people worked to solve problems dealing with distances and area in the real world.
That process of moving from the concrete to the abstract scenario is known, appropriately enough, as abstraction. Through abstraction, the underlying essence of a mathematical concept can be extracted. People no longer have to depend on real world objects, as was once the case, to solve a mathematical puzzle. They can now generalise to have wider applications or by matching it to other structures can illuminate similar phenomena. An example is the adding of integers, fractions, complex numbers, vectors and matrices. The concept is the same, but the applications are different.
This evolution was necessary for the development of mathematics, and important for other scientific disciplines too.
Why is this important? Because the growth of abstraction in maths gave disciplines like chemistry, physics, astronomy, geology, meteorology the ability to explain a wide variety of complex physical phenomena that occur in nature. If you grasp the process of abstraction in mathematics, it will equip you to better understand abstraction occurring in other tough science subjects like chemistry or physics.
From the real world to the abstract
The earliest example of abstraction was when humans counted before symbols existed. A sheep herder, for instance, needed to keep track of his flock of sheep without having any sort of symbolic system akin to numbers. So how did he do this to ensure that none of his sheep wandered away or got stolen?
One solution is to obtain a big supply of stones. He then moved the sheep one-by-one into an enclosed area. Each time a sheep passed, he placed a stone in a pile. Once all the sheep had passed, he got rid of the extra stones and was left with a pile of stones representing his flock.
Every time he needed to count the sheep, he removed the stones from his pile; one for each sheep. If he had stones left over, it means some sheep had wandered away or perhaps been stolen. This one-to-one correspondence helped the shepherd to keep track of his flock.
Today, we use the Arabic numbers (also known as the Hindu-Arabic numerals): 0,1,2,3,4,5,6,7,8,9 to represent any integer, that is any whole number.
This is another example of abstraction, and it's powerful. It means we're able to handle any amount of sheep, regardless of how many stones we have. We've moved from real-world objects - stones, sheep - to the abstract. There is real strength in this: we've created a space where the rules are minimalistic, yet the games that can be played are endless.
Another advantage of abstraction is that it reveals a deeper connection between different fields of mathematics. Results in one field can suggest concepts and ideas to be explored in a related field. Occasionally, methods and techniques developed in one field can be directly applied to another field to create similar results.
Tough concepts, better teaching
Of course, abstraction also has its disadvantages. Some of the mathematical subjects taught at university level - Calculus, Real Analysis, Linear Algebra, Topology, Category Theory, Functional Analysis and Set Theory among them - are very advanced examples of abstraction.

hese concepts can be quite difficult to learn. They're often tough to visualise and their rules rather unintuitive to manipulate or reason with. This means students need a degree of mathematical maturity to process the shift from the concrete to the abstract.
Many high school kids, particularly from developing countries, come to university with an undeveloped level of intellectual maturity to handle abstraction. This is because of the way mathematics was taught at high school. I have seen many students struggling, giving up or not even attempting to study mathematics because they weren't given the right tools at school level and they think that they just "can't do maths".
Teachers and lecturers can improve this abstract thinking by being aware of abstractions in their subject and learning to demonstrate abstract concepts through concrete examples. Experiments are also helpful to familiarise and assure students of an abstract concept's solidity.
This teaching principle is applied in some school systems, such as Montessori, to help children improve their abstract thinking. Not only does this guide them better through the maze of mathematical abstractions but it can be applied to other sciences as well.

South Africa

The African National Congress announced on Thursday that former public enterprises minister Lynne Brown has resigned as… Read more »


とても興味深く読みました:ゼロ除算の発見4周年超えました:

再生核研究所声明 420(2018.3.2): ゼロ除算は正しいですか,合っていますか、信用できますか - 回答

ゼロ除算に 興味を抱いている方の 率直な 疑念です。大きな国際会議で、感情的になって 現代の数学を破壊するもので 全く認められないと発言された方がいる。現代初等数学には基本的な欠陥があって、我々の空間の認識は ユークリッド以来の修正が求められ、初等数学全般の再構成が要求されていると述べている。それで、もちろん、慎重に 慎重に対応しているのは当然である。
本来 数学者は 論理に厳格で 数学の世界ほど 間違えの無い世界は無いと言えるのではないだろうか。 実際、一人前の数学者とは、独自の価値観を有し、論理的な間違いはしない者である と考えられているのではないだろうか。2000年を越える超古典的な数学に反した 新しい世界が現れたので、異常に慎重になり、大丈夫か大丈夫かと4年間を越えて反芻して来た(再生核研究所声明 411(2018.02.02): ゼロ除算発見4周年を迎えて)。 そこで、ゼロ除算の成果における信頼性を客観的に 疑念に対する回答として纏めて置こう。これらは、貴重な記録になると考えられる。
まず、研究成果は 3年半を越えて、広く公開している: 
数学基礎学力研究会 サイトで解説が続けられている:http://www.mirun.sctv.jp/~suugaku/
また、ohttp://okmr.yamatoblog.net/  関連情報を公開している
ゼロ除算の研究は、内外の研究者に意見を求められながら共同で進め、12編を越える論文を出版確定にしている。日本数学会では6期3年間を越えて関係講演を行い、成果を発表して来た。 またその際、ゼロ除算の解説冊子(2015.1.14付け)を1000部以上広く配布して意見を求めてきたが、論理的な不備などはどこからも指摘されていない。ここ4年間海外の関係専門家と250以上のメールで議論してきた(ある人がそう述べてきた:2018年2月27日 18:45 Since then I have received about 250 messages from you about it. Unbelievable! :2018年2月27日 18:45)が 論理的な不備は指摘されなく、関係者の諒解(理解)が付いていると判断されている。逆に他の理論については 全て具体的に批判し、良くないと述べている。50カ国200名以上参加の大きな国際会議に 全体講演者として招待され、講演を行い、かつ論文がその会議禄に2編Springer社から出版される。公開していたゼロ除算の総合的な研究著書原案154ページに対して、イギリスの出版社が出版を勧め、外部審査、社内審査を終えて、著書の出版を決定している。
ゼロ除算を裏付ける知見は 初等数学全般から700件を超え、公開している。共著者として論文執筆に参加している人は、代表者以外内外8名である。
以上の状況は ゼロ除算の数学的な信用性を裏付けていると考えるが、如何であろうか。 
以 上

再生核研究所声明 411(2018.02.02):  ゼロ除算発見4周年を迎えて

ゼロ除算100/0=0を発見して、4周年を迎える。 相当夢中でひたすらに その真相を求めてきたが、一応の全貌が見渡せ、その基礎と展開、相当先も展望できる状況になった。論文や日本数学会、全体講演者として招待された大きな国際会議などでも発表、著書原案154ページも纏め(http://okmr.yamatoblog.net/)基礎はしっかりと確立していると考える。数学の基礎はすっかり当たり前で、具体例は700件を超え、初等数学全般への影響は思いもよらない程に甚大であると考える: 空間、初等幾何学は ユークリッド以来の基本的な変更で、無限の彼方や無限が絡む数学は全般的な修正が求められる。何とユークリッドの平行線の公理は成り立たず、すべての直線は原点を通るというが我々の数学、世界であった。y軸の勾配はゼロであり、\tan(\pi/2) =0 である。 初等数学全般の修正が求められている。
数学は、人間を超えたしっかりとした論理で組み立てられており、数学が確立しているのに今でもおかしな議論が世に横行し、世の常識が間違っているにも拘わらず、論文発表や研究がおかしな方向で行われているのは 誠に奇妙な現象であると言える。ゼロ除算から見ると数学は相当おかしく、年々間違った数学やおかしな数学が教育されている現状を思うと、研究者として良心の呵責さえ覚える。
複素解析学では、無限遠点はゼロで表されること、円の中心の鏡像は無限遠点では なくて中心自身であること、ローラン展開は孤立特異点で意味のある、有限確定値を取ることなど、基本的な間違いが存在する。微分方程式などは欠陥だらけで、誠に恥ずかしい教科書であふれていると言える。 超古典的な高木貞治氏の解析概論にも確かな欠陥が出てきた。勾配や曲率、ローラン展開、コーシーの平均値定理さえ進化できる。
ゼロ除算の歴史は、数学界の避けられない世界史上の汚点に成るばかりか、人類の愚かさの典型的な事実として、世界史上に記録されるだろう。この自覚によって、人類は大きく進化できるのではないだろうか。
そこで、我々は、これらの認知、真相の究明によって、数学界の汚点を解消、世界の文化への貢献を期待したい。
ゼロ除算の真相を明らかにして、基礎数学全般の修正を行い、ここから、人類への教育を進め、世界に貢献することを願っている。
ゼロ除算の発展には 世界史がかかっており、数学界の、社会への対応をも 世界史は見ていると感じられる。 恥の上塗りは世に多いが、数学界がそのような汚点を繰り返さないように願っている。
人の生きるは、真智への愛にある、すなわち、事実を知りたい、本当のことを知りたい、高級に言えば神の意志を知りたいということである。そこで、我々のゼロ除算についての考えは真実か否か、広く内外の関係者に意見を求めている。関係情報はどんどん公開している。
4周年、思えば、世の理解の遅れも反映して、大丈夫か、大丈夫かと自らに問い、ゼロ除算の発展よりも基礎に、基礎にと向かい、基礎固めに集中してきたと言える。それで、著書原案ができたことは、楽しく充実した時代であったと喜びに満ちて回想される。
以 上


List of division by zero:

\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum.

Saburou Saitoh, Mysterious Properties of the Point at Infinity、
arXiv:1712.09467 [math.GM]

Hiroshi Okumura and Saburou Saitoh
The Descartes circles theorem and division by zero calculus. 2017.11.14

L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

T. Matsuura and S. Saitoh,
Matrices and division by zero z/0=0,
Advances in Linear Algebra \& Matrix Theory, 2016, 6, 51-58
Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.

T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication).

T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.)

H. Michiwaki, S. Saitoh and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. 6(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

H. Michiwaki, H. Okumura and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces,
International Journal of Mathematics and Computation, 28(2017); Issue 1, 2017), 1-16.

H. Okumura, S. Saitoh and T. Matsuura, Relations of $0$ and $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017), 70-77.

S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics).

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182. (Springer) .


再生核研究所声明 414(2018.2.14): 第1回ゼロ除算研究集会基調講演要旨
日時:2018.3.15(木曜日) 11:00  - 15:00 場所: 群馬大学大学院 理工学府
ゼロで割る問題 例えば100/0の意味、 ゼロ除算は インドで628年ゼロの発見以来の問題として、神秘的な歴史を辿って来ていて、最近でも大論文がおかしな感じで発表されている。ゼロ除算は 物理的には アリストテレスが 最初に不可能であると専門家が論じていて、それ以来物理学上での問題意識は強く、アインシュタインの人生最大の関心事であったという。ゼロ除算は数学的には 不可能であるとされ、数学的ではなく、物理学上の問題とゼロ除算が計算機障害を起こすことから、論理的な回避を目指して、今なお研究が盛んに進められている。
しかるに、我々は約4年前に全く、自然で簡単な 数学的に完全である と考えるゼロ除算を発見して現在、全体の様子が明かに成って来た。そこで、ゼロ除算を歴史的に振り返り、我々の発見した新しい数学を紹介したい。

まず、歴史、結果と、結果の意義と意味、を簡潔に 誰にでも分かるように解説したい。
簡単な結果が、アリストテレス、ユークリッド以来の 我々の空間の認識を変える、実は新しい世界を拓いていること。それらを実証するための 具体例を沢山挙げる。我々の空間の認識は 2000年以上 適切ではなく、したがって 初等数学全般に欠陥があることを 沢山の具体例で示す。
ゼロ除算は新しい世界を拓いており、この分野の研究を進め、世界史に貢献する意志を持ちたい。
尚、ゼロおよび算術の確立者 Brahmagupta (598 -668 ?) は1300年以上も前に、0/0=0 と定義していたのに、世界史は それは間違いであるとしてきた、数学界と世界史の恥を反省して、世界史の進化を図りたい。

以 上

再生核研究所声明 415(2018.2.19):  数学の進化は単調か、進化と衰退

数学とは ある仮定系を基礎(公理系)に論理的に導かれる関係達の集まりである(No.81, May 2012 (pdf 432kb) www.jams.or.jp/kaiho/kaiho-81.pdf)。数学者はそれゆえに導かれている結果、関係から、新しい関係を導く活動を 研究と称して行っていると言える。分かり易い問題意識は、提起された予想や問題を解決することであるが、それらさえ関係をキチンと確立させることであると表現される。
例えばリーマン予想やフェルマー予想等は歴史的に有名であり、 ピタゴラスの定理やオイラーの公式は基本的で美しい関係式として有名である。数学を進化させる原動力であるが、命題、定理の一般化や精密化なども分かり易い数学の研究姿勢である。 今までの定理を含むような結果は進化した結果であり、知られている関係の詳しい関係の発見も分かり易い数学の進化である。しかしながら、ある分科で一般化、精密化が極端に進めば、理解できる者は限られ、興味関心を抱く者も極端に少なくなり、世の中との関係も薄くなってしまい、 それらの意味は どれほどかと問われる程に成る。 それらの分科から少しずれた人たちは興味も関心も抱かず、 得られたり 論じている世界さえ理解できなくなってしまう。 多くの人は、そのような理論には、興味も関心もないと思ってしまう。そうなれば、数学のそのような状態は衰退した末期的状況と言えるだろう。
その様な数学の姿は 生物の生体のように、誕生の鮮やかさ、成長期のみずみずしさ、衰退期などと同じようにみられる。
人生70年くらいのスパンで見れば、 ある分野の数学の華やかさと衰退そしてほとんど関心がもたれなくなる姿を見ることになる。そのような観点から、永い時代愛されてきた結果は 基本的で衰退することはなく、本質的な結果として時代を超えて存在し、愛されるものになるだろう。それらを表現する言葉は、基本的である、美しい、影響力のある結果であると纏められよう。
数学の質の高い研究として 概念の創造、関係そのものの定義について触れて置こう。微分の概念、積分の概念、勾配の概念、群の概念、位相の概念などなどである。それらの概念の発見は、既に新しい数学の始めであるから、数学の芽のようなもので、基本であればそれだけ価値あるものになる。多くの場合、物理や自然現象からそのような概念が生まれた経緯に注目して置きたい。概念の分かり易い表現は名付けることである。子供が誕生したり、新しい星や島を発見したら命名するようにである。
声明の表題の趣旨は 何事成長の様は単調ではなく、大きな視野を持って研究の状況の判断を行うことの重要性を指摘し、絶えず新しい芽を探し、待つ心のゆとりが大事であることを指摘することである。成果主義の煽りで、成果を急ぎ過ぎて形式的な抹消の研究に囚われ過ぎてしまう危険な世相の時代ではないだろうか。 形式的な評価、数値の量に囚われた実の無い研究の空しい時代の観がしないだろうか。 研究には余裕、楽しみ、本質を求める精神が大事ではないだろうか。 最近 岡潔氏の話題が多いが、岡氏のようには 普通はなれず、そのようには研究者としては生きていけないから、まねることは良くなく、何事ほどほどが大事で、いろいろな在りようも尊重されるべきである。しかしながら、岡氏のよう人物も大事に育てる文化を持つことも 大事ではないだろうか。天才の育成も、平凡な数学者も、数学愛好者の育成もそれぞれに大事ではないだろうか。 高い山は、大きな裾野が広がってこそ有り得る。多様な世界は偉大なる世界であり、人間存在の価値を高める原理である。
ところで、衰退であるが、国家が衰退したり、生物が病的に衰退するように、もともとの発祥の動機、育成のみずみずしさを失い、それらの周辺におかしな在りようが蔓延して 本末転倒なような状況が増大すれば、学問の在り様などもおかしくなって急激に衰退するのではないだろうか。 大学は何をするところかと問うた言葉が想起させられる。何の為の数学か、何のための数学教育かと絶えず自戒して行きたい。疑問を抱いたり、疑ったり、考えたりしてはいけない、と教育の場で指導された生徒の不満の声も結構多い世相はないだろうか。この観点から、
しかしながら、1300年以上に亘って、算術の創始者が0/0は0であると定義していたものを それは間違いであると言ってきた世界の数学界は 相当おかしく、世界の数学界の恥ではないだろうか。
と 繰り返し述べてきた。 数学界のゼロ除算思考停止は 数学界がマインドコントロールされているように現在でも世界の大勢である状況にあると言える。
そこで、我々のゼロ除算についての考えは真実か否か、広く内外の関係者に意見を求めている。関係情報はどんどん公開している。次も参照:
再生核研究所声明 402(2017.11.19): 研究進めるべきか否か - 数学の発展
再生核研究所声明 408(2018.1.25):  数学を越えて ― 価値あるものとは
以 上


以 上

0 件のコメント:

コメントを投稿