2017年8月25日金曜日

Greeks lose credit for trigonometry

Greeks lose credit for trigonometry

Sydney researchers have stripped the Ancient Greeks of credit for inventing trigonometry, after deciphering a ­famous 3700-year-old Babylon­ian clay tablet.
The small ceramic slab was discovered in Iraq about a century ago by antiquities dealer Edgar Banks, the historical model of the Indiana Jones character. Archeologists have long puzzled over the significance of the tablet, which is known as “Plimpton 322” after the collector who bought it from Banks, reputedly for $10.
Now two University of NSW mathematicians have found it was a trigonometric table that predated Greek versions by about 1600 years. This suggests it could have been used for surveying or construction rather than as a set of teaching exercises, as had been claimed.
Co-author Daniel Mansfield said “giants” of his field had spent seven decades studying the tablet and reconstructing its rows and columns. “But they didn’t put their finger on trigonometry ­because trigonometry in our culture is all about angles, and Babylon­ians didn’t have the concept of angles … That was the missing link,’’ Dr Mansfield said.
Trigonometry is the study of triangles, and people use trigonometric tables to determine the shapes of triangles from angles — a practice traditionally credited to Greek astronomer Hipparchus in the 2nd century BC.
Dr Mansfield said this ­approach was “perfect” for ­astronomy, but unnecessary “if you just want to study triangles”.
He said the Babylonians had done this through ratios, such as the relationship between the length of a triangle and its width.
When he and co-author ­Norman Wildberger treated the tablet as a trigonometric table based on ratios, “everything just fell into place”.
“The headings, the information on the tablet, the supposed reconstructions — they all made sense. The only ­reason someone didn’t propose it 70 years ago is because everyone thinks trigonometry is about ­angles,’’ Dr Mansfield said.
He said historians were only beginning to recognise the sophistication of the Babylonian culture, all but forgotten until about 200 years ago. A paper published last year in the journal Science suggested that Babylonian mathematicians had come close to developing calculus, a discipline normally credited to Renaissance thinkers like Isaac Newton.
The new study has been published in the journal Historia Mathematica.
Dr Mansfield said it highlighted a “remarkable cultural aspect” of maths. “People like to think mathematics is a universal thing that should always be the same across cultures. It’s not. We just think that because we only ever get taught one way of doing things.”

 
とても興味深く読みました:
 
西洋と東洋の「0」への考え方

(1)「0」を嫌う西洋(キリスト教社会)

「空虚」すなわち「0」を嫌うアリストテレスの影響を受け、「0」を認めない。
「0」を認めることは、「神様なんていないよ」と言うことと同じくらいの罪。 


(2)「0」を受け入れた東洋(イスラム教社会)

「空虚」を受け入れ、「0」を取り入れる。
また、図形にとらわれない数学や、分数を小数に直して計算しやすくするなど計算技術を高めた。 
 
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 380:   What is the zero?\\
(2017.8.21)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
 }
\date{\today}
\maketitle

\section{What is the zero?}

The zero $0$ as the complex number or real number is given clearly by the axions by the complex number field and real number field.

For this fundamental idea, we should consider the {\bf Yamada field}  containing the division by zero. The Yamada field and the division by zero calculus will arrange our mathematics, beautifully and completely; this will be our natural and complete mathematics.
\medskip

\section{ Double natures of the zero $z=0$}

The zero point $z=0$ represents the double natures; one is the origin at the starting point and another one is a representation of the point at infinity. One typical and simple example is given by $e^0 = 1,0$, two values. {\bf God loves  two}.

\section{Standard value}
\medskip

The zero is a center and stand point (or bases, a standard value) of the coordinates - here we will consider our situation on the complex or real 2 dimensional spaces. By stereographic
 projection mapping or the Yamada field, the point at infinity $1/0$ is represented by zero. The origin of the coordinates and the point at infinity correspond each other.

As the standard value, for the point $\omega_n = \exp \left(\frac{\pi}{n}i\right)$  on the unit circle $|z|=1$ on the complex $z$-plane is,  for $n = 0$:
\begin{equation}
\omega_0 = \exp \left(\frac{\pi}{0}i\right)=1, \quad  \frac{\pi}{0} =0.
\end{equation}
For the mean value
$$
M_n  = \frac{x_1  +  x_2  +... + x_n}{n},
$$
we have
$$
M_0 = 0 = \frac{0}{0}.
$$
\medskip

\section{ Fruitful world}
\medskip

For example, for very and very general partial differential equations, if the coefficients or terms are zero, then we have some simple differential equations and the extreme case is all the terms are zero; that is, we have trivial equations $0=0$; then its solution is zero. When we consider the converse, we see that the zero world is a  fruitful one and it means some vanishing world. Recall Yamane phenomena (\cite{kmsy}), the vanishing result is very simple zero, however, it is the result from some fruitful world. Sometimes, zero means void or nothing world, however, it will show {\bf some changes} as in the Yamane phenomena.

\section{From $0$ to $0$; $0$ means all and all are $0$}
\medskip

As we see from our life figure (\cite{osm}), a story starts from the zero and ends with the zero. This will mean that $0$ means all and all are $0$. The zero is a {\bf mother} or an {\bf origin} of all.
\medskip

\section{ Impossibility}
\medskip
As the solution of the simplest equation
\begin{equation}
ax =b
\end{equation}
we have $x=0$ for $a=0, b\ne 0$ as the standard value, or the Moore-Penrose generalized inverse. This will mean in a sense, the solution does not exist; to solve the equation (6.1) is impossible.
We saw for different parallel lines or different parallel planes, their common points are the origin. Certainly they have the common points of the point at infinity and the point at infinity is represented by zero. However, we can understand also that they have no solutions, no common points, because the point at infinity is an ideal point.

Of course. we can consider the equation (6.1)  even the case $a=b=0$ and then we have the solution $x=0$ as we stated.

We will consider the simple differential equation
\begin{equation}
m\frac{d^2x}{dt^2} =0,  m\frac{d^2y}{dt^2} =-mg
\end{equation}
with the initial conditions, at $t =0$
\begin{equation}
 \frac{dx}{dt} = v_0 \cos \alpha , \frac{d^2x}{dt^2} = \frac{d^2y}{dt^2}=0.
\end{equation}
Then,  the highest high $h$, arriving time $t$, the distance $d$ from the starting point at the origin to the point $y(2t) =0$ are given by
\begin{equation}
h = \frac{v_0 \sin^2 \alpha}{2g},  d= \frac{v_0\sin \alpha}{g}
\end{equation}
and
\begin{equation}
t= \frac{v_0 \sin \alpha}{g}.
\end{equation}
For the case $g=0$, we have $h=d =t=0$. We considered the case that they are the infinity; however, our mathematics means zero, which shows impossibility.

These phenomena were looked many cases on the universe; it seems that {\bf God does not like the infinity}.

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
H. Michiwaki, S. Saitoh,  and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$, Advances in Linear Algebra
\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt 

\bibitem{mos}
H.  Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
 International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 

\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? -  the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

\bibitem{ann326}
 Announcement 326 (2016.10.17): The division by zero z/0=0 - its impact to human beings through education and research.

 \bibitem{ann352}
Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

\bibitem{ann354}
Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? -- relations of $0$ and infinity.

\bibitem{362}
Announcement 362(2017.5.5):   Discovery of the division by zero as
$0/0=1/0=z/0=0$.


\end{thebibliography}

\end{document}

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi
http://okmr.yamatoblog.net/

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
https://sites.google.com/site/sandrapinelas/icddea-2017

2017.8.21.06:37

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

                                                1/0=0、0/0=0、z/0=0


1/0=0、0/0=0、z/0=0

0 件のコメント:

コメントを投稿