Some paradoxes of infinity
We have rules of arithmetic and algebra that help us manipulate numbers, and we also have gut feelings, or intuitions, about numbers. It is clear, for example, that if we have a collection S of points, and add some more points to get a larger collection T, then the number of points in S is strictly smaller than the number of points in T. We also know that ‘100 per cent of S’ means the same as “all of S”.
These rules and intuitions are based on finite numbers, because that is what we are familiar with. When we start examining infinite numbers, some of those rules and intuitions break down.
For example, let S be the collection of points on a line; note that the line has finite (and positive) length, but it contains infinitely many points, and each point has no length. This already flies in the face of our intuitions – we have a line whose length is greater than 0, and it consists of points which each have length 0. This also means that, if we remove a single point P from S, we will have removed 0 per cent of the length, and the number of points will be reduced by 0 per cent; we are left with 100 per cent of the points (and 100 per cent of the length) of S, even though P has been removed.
We can do this over and over again, removing two points, or 10 points, or a million million points (any finite number in fact), and we will still have removed 0 per cent of the points. That is just how large infinity is, that even a millon million is 0 per cent of infinity.
Now consider a line T that is longer than S. We can easily map every point in S to a point in T, and have infinitely many points in T left over.
But we can also bend S and T into circles, and put the smaller circle inside the larger one, as shown in the figure. Now, for every point A on the outer circle, we draw a line from A to the centre; this passes through a point B on the inner circle. Every point on the outer circle maps to a unique point on the inner circle, and vice versa, so there are exactly as many points on the outer circle as there are on the inner circle.
Sound bites
• From the international scene: A graph G consists of a set of points called vertices, and some pairs of vertices may be joined by an edge. Consider a vertex v; the number of edges that include v is called the degree of v. If v has degree k, then there are k vertices (called neighbours) joined to v by an edge; if the neighbours have degrees d1, d2, ..., dk, then we say that v has vertex-type (d1, d2, ..., dk). Consider a graph with 10 vertices v0, v1, v2, …, v9. What is the smallest possible degree of v0 (for example)? What is the largest possible degree of v0? If v0 has degree 0, can any other vertex have degree 9? This demonstrates that the vertices of G cannot all have different degrees. However, they can all have different vertex-types. Schreyer, Walther and Mel’nikov [Vertex-oblique graphs, Discrete Mathematics 307 (2007)] showed that “almost all” graphs have different vertex-types. They also constructed graphs G such that the vertex-types of G and G’ are all different, where G’ is the complement of G, that is, the graph where two vertices are joined by an edge if, and only if, they are not joined in G.
• From the local scene: Alastair Farrugia [Dually vertex-oblique graphs, Discrete Mathematics 307 (2007)] showed that many of Schreyer’s graphs have a unique vertex-type sequence (the list of vertex-types of the vertices of a graph). Farrugia also constructed graphs G where the vertex-types of G are all different but the same as those of G’. Moreover, he showed that such graphs never have a unique vertex-type sequence.
For more science news, listen to Radio Mocha on Radju Malta 2 every Monday at 1pm and every Friday at 6pm.
Did you know?
• Georg Cantor (1845-1918) was the first mathematician to show that there are different “levels” of infinity. Poincaré referred to Cantor’s ideas as a “grave disease” infecting mathematics, and that “most of the ideas of Cantor should be banished”. Kronecker called Cantor a “scientific charlatan”, “renegade” and “corrupter of youth”. The philosopher Wittgenstein, decades after Cantor’s death, dismissed Cantor’s concepts as “utter nonsense” that is “laughable” and “wrong”. However, David Hilbert wrote of the “paradise” that Cantor unfolded, and from which “we shall not be expelled”.
• Cantor defined ordinal numbers (used when counting) and also cardinal numbers (used to tell how large a collection of objects is). Finite ordinals are the same as cardinals; for example, we count 1, 2, 3, 4 (four different ordinal numbers), and we can have bags with 1, 2, 3 or 4 oranges (four bags of different sizes or “cardinalities”). After the natural numbers 0, 1, 2, ... comes the first infinite ordinal, ω, followed by ω+1, ω+2, ...; however, ω, ω+1, ω+2, ... describe bags of the same size (or “sets” of the same “cardinality”).
• At the other end of the scale are “infinitesimals”, things so small that there is no way to measure them. They were used by Archimedes (287-212 BC), Leibniz (1646-1716), Robinson (1918-1974) and others. Ironically, while Cantor was being attacked for his work on infinity, he himself described infinitesimals as “a cholera bacillus of mathematics”.
For more trivia see: www.um.edu.mt/think
とても興味深く読みました:
再生核研究所声明232(2015.5.26)無限大とは何か、無限遠点とは何か。― 驚嘆すべきゼロ除算の結果
まず、ウィキペディアで無限大、無限遠点、立体射影: 語句を確認して置こう:
無限大 :記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)で表す。 大雑把に言えば、いかなる数よりも大きいさまを表すものであるが、より明確な意味付けは文脈により様々である。例えば、どの実数よりも大きな(実数の範疇からはずれた)ある特定の“数”と捉えられることもある(超準解析や集合の基数など)し、ある変量がどの実数よりも大きくなるということを表すのに用いられることもある(極限など)。無限大をある種の数と捉える場合でも、それに適用される計算規則の体系は1つだけではない。実数の拡張としての無限大には ∞ (+∞) と −∞ がある。大小関係を定義できない複素数には無限大の概念はないが、類似の概念として無限遠点を考えることができる。また、計算機上ではたとえば∞+iのような数を扱えるものも多い。
無限遠点 : ユークリッド空間で平行に走る線が、交差するとされる空間外の点あるいは拡張された空間における無限遠の点。平行な直線のクラスごとに1つの無限遠点があるとする場合は射影空間が得られる。この場合、無限遠点の全体は1つの超平面(無限遠直線、無限遠平面 etc.)を構成する。また全体でただ1つの無限遠点があるとする場合は(超)球面が得られる。複素平面に1つの無限遠点 ∞ を追加して得られるリーマン球面は理論上きわめて重要である。無限遠点をつけ加えてえられる射影空間や超球面はいずれもコンパクトになる。
立体射影: 数学的な定義
· 単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
· 冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
· 3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
· M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。
無限大とは何だろうか。 図で、xの正方向を例えば考えてみよう。 0、1、2、3、、、などの正の整数を簡単に考えると、 どんな大きな数(正の) n に対しても より大きな数n + 1 が 考えられるから、正の数には 最も大きな数は存在せず、 幾らでも大きな数が存在する。限りなく大きな数が存在することになる。 そうすると無限大とは何だろうか。 普通の意味で数でないことは明らかである。 よく記号∞や記号+∞で表されるが、明確な定義をしないで、それらの演算、2 x∞、∞+∞、∞-∞、∞x∞,∞/∞ 等は考えるべきではない。無限大は普通の数ではない。 無限大は、極限を考えるときに有効な自然な、明確な概念、考えである。 幾らでも大きくなるときに 無限大の記号を用いる、例えばxが どんどん大きくなる時、 x^2 (xの2乗)は 無限大に近づく、無限大である、無限に発散すると表現して、lim_{x \to +\infty} x^2 =+∞ と表す。 記号の意味はxが 限りなく大きくなるとき、x の2乗も限りなく大きくなるという意味である。 無限大は決まった数ではなくて、どんどん限りなく 大きくなっていく 状況 を表している。
さて、図で、 x が正の方向で どんどん大きくなると、 すなわち、図で、P ダッシュが どんどん右方向に進むとき、図の対応で、Pがどんどん、 Nに近づくことが分かるだろう。
x軸全体は 円周の1点Nを除いた部分と、 1対1に対応することが分かる。 すなわち、直線上のどんな点も、円周上の1点が対応し、逆に、円周の1点Nを除いた部分 のどんな点に対しても、直線上の1点が対応する。
面白いことは、正の方向に行っても、負の方向に行っても原点からどんどん遠ざかれば、円周上では Nの1点にきちんと近づいていることである。双方の無限の彼方が、N の1点に近づいていることである。
この状況は、z平面の原点を通る全ての直線についても言えるから、平面全体は球面全体からNを除いた球面に 1対1にちょうど写っていることが分かる。
そこで、平面上のあらゆる方向に行った先が存在するとして 想像上の点 を考え、その点に球面上の点 Nを対応させる。 すると、平面にこの想像上の点を加えた拡張平面は 球面全体 (リーマン球面と称する) と1対1に 対応する。この点が 無限遠点で符号のつかない ∞ で 表す。 このようにして、無限を見ることが、捉えることができたとして、喜びが湧いてくるのではないだろうか。 実際、これが100年を越えて、複素解析学で考えられてきた無限遠点で 美しい理論体系を形作ってきた。
しかしながら、無限遠点は 依然として、数であるとは言えない。人為的に無限遠点に 代数的な構造を定義しても、人為的な感じは免れず、形式的、便宜的なもので、普通の数としては考えられないと言える。
ところが、ゼロ除算の結果は、1 / 0 はゼロであるというのであるから、これは、上記で何を意味するであろうか。基本的な関数 W=1/z の対応は、z =0 以外は1対1、z =0 は W=0 に写り、全平面を全平面に1対1に写している。 ゼロ除算には無限遠点は存在せず、 上記 立体射影で、 Nの点が突然、0 に対応していることを示している。 平面上で原点から、どんどん遠ざかれば、 どんどんNに近づくが、ちょうどN に対応する点では、 突然、0 である。
この現象こそ、ゼロ除算の新規な神秘性である。
上記引用で、記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)、オイラーもゼロ除算は 極限の概念を用いて、無限と理解していたとして、天才 オイラーの間違いとして指摘されている。
ゼロ除算は、極限の概念を用いて得られるのではなくて、純粋数学の理論の帰結として得られた結果であり、世の不連続性の現象を表しているとして新規な現象の研究を進めている。
ここで、無限大について、空間的に考えたが、個数の概念で、無限とは概念が異なることに注意して置きたい。 10個、100個、無限個という場合の無限は異なる考えである。自然数1,2,3、、、等は無限個存在すると表現する。驚嘆すべきことは、無限個における無限には、幾らでも大きな無限が存在することである。 例えば、自然数の無限は最も小さな無限で、1cm の長さの線分にも、1mの長さの線分にも同数の点(数、実数)が存在して、自然数全体よりは 大きな無限である。点の長さはゼロであるが、点の集まりである1cmの線分には長さがあるのは、線分には点の個数が、それこそ目もくらむほどの多くの点があり、長さゼロの点をそれほど沢山集めると,正の長さが出てくるほどの無限である。
以 上
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。
再生核研究所声明236(2015.6.18)ゼロ除算の自明さ、実現と無限遠点の空虚さ
(2015.6.14.07:40 頃、食後の散歩中、突然考えが、全体の構想が閃いたものである。)
2015年3月23日、明治大学における日本数学会講演方針(メモ:公開)の中で、次のように述べた: ゼロ除算の本質的な解明とは、Aristotélēs の世界観、universe は連続である を否定して、 強力な不連続性を universe の自然な現象として受け入れられることである。数学では、その強力な不連続性を自然なものとして説明され、解明されること が求められる。
そこで、上記、突然湧いた考え、内容は、ゼロ除算の理解を格段に進められると直観した。
半径1の原点に中心を持つ、円Cを考える。いま、簡単のために、正のx軸方向の直線を考える。 その時、 点x (0<x<1)の円Cに関する 鏡像 は y = 1/x に映る。この対応を考えよう。xが どんどん 小さくゼロに近づけば、対応する鏡像 yは どんどん大きくなって行くことが分かる。そこで、古典的な複素解析学では、x =0 に対応する鏡像として、極限の点が存在するものとして、無限遠点を考え、 原点の鏡像として 無限遠点を対応させている。 この意味で 1/0 = ∞、と表わされている。 この極限で捉える方法は解析学における基本的な考え方で、アーベルやオイラーもそのように考え、そのような記号を用いていたという。
しかしながら、このような極限の考え方は、適切ではないのではないだろうか。正の無限、どこまで行っても切りはなく、無限遠点など実在しているとは言えないのではないだろうか。これは、原点に対応する鏡像は x>1に存在しないことを示している。ところが、ゼロ除算は 1/0=0 であるから、ゼロの鏡像はゼロであると述べていることになる。実際、鏡像として、原点の鏡像は原点で、我々の世界で、そのように考えるのが妥当であると考えられよう。これは、ゼロ除算の強力な不連続性を幾何学的に実証していると考えられる。
ゼロ以上の数の世界で、ゼロに対応する鏡像y=1/xは存在しないので、仕方なく、神はゼロにゼロを対応させたという、神の意思が感じられるが、それが この世界における実態と合っているということを示しているのではないだろうか。
この説は、伝統ある複素解析学の考えから、鏡像と無限遠点の概念を変える歴史的な大きな意味を有するものと考える。
以 上
再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点
(道脇さんたちの、和算の伝統を感じさせるような、何とも 言えない魅力 がありますね。 添付のように完成させたい。例の専門家たち、驚いて対応を検討しているのでは?どんどん、事情がみえてきました. 今朝の疑問も きれいに散歩中 8時15分 ころ、解決できました.成文化したい。2015.11.1.9:7
無限遠点の値の意味を 約1年半ぶりに 神は関数値を平均値として認識する で 理解できました。今、気になるのは,どうして、正の無限 負の無限、および ゼロが近いのかです。その近いという意味を、 正確に理解できない。 近い事実は 添付する 電柱の左右の傾きに現れている。
log 0=0
と定義するのが 自然ですが、それには、 ゼロと マイナス無限大 が一致しているとも言える。 そのところが 不明、何か新しい概念、考え 哲学が 求められている???
2015.11.1.05:50)
ローラン展開の正則部の値の解釈のように(再生核研究所声明255 (2015.11.03) 神は、平均値として関数値を認識する)、実は当たり前だったのに、認識がおかしかったことに気づいたので、正確に表現したい。
まず、正の無限大とは何だろうか。 1,2,3,…… といけば、正の整数は 正の無限大に収束、あるいは発散すると表現するだろう。 この正確な意味は イプシロン、デルタ論法という表現で厳格に表現される。すなわち、 どんなに大きな 整数 n をとっても、あるN を取れば(存在して)、N より大の 全ての整数 m に対して、n < m が成り立つと定義できる。 いろいろな設定で、このようにして、無限は定義できる。 どんなに大きな数に対しても、より大の整数が存在する。 それでは、+∞ とは何だろうか。 限りなく大きな数の先を表す概念であることが分かる。 大事な視点は +∞は 定まった数ではなくて、極限で考えられたもので、近づいていく先を表した状況で考えられていることである。 これらの概念は極限の概念として、現代数学で厳格に定義され、その概念は新しいゼロ除算の世界でも、全て適切で、もちろん正しい。
簡単な具体例で説明しよう。 関数y=1/x のグラフはよく知られているように、正の実軸からゼロに近づけば、+∞に発散し、負からゼロに近づけば、-∞に発散する。 ところが、原点では、既に述べてきたように、その関数値はゼロである。 この状況を見て、0、+∞、-∞ らが近い、あるいは 一致していると誤解してはならない。+∞、-∞ らは数ではなく、どんどん大きくなる極限値や、どんどん小さくなる極限値を表しているのであって、それらの先、原点では突然にゼロにとんでいる 強力な不連続性を示しているのである。
複素解析における無限遠点も同様であって、立体射影で複素平面はリーマン球面に射影されるが、無限遠点とは あらゆる方向で原点から限りなく遠ざかった時に、想像上の点が存在するとして、その射影としてりーマン球面上の北極を対応させる。 関数W=1/z は原点でその点が対応すると、解析関数論では考え、原点で一位の極をとると表現してきた。
しかしながら、新しく発見されたゼロ除算では、1/0=0 であり 原点には、ゼロが対応すると言っている。 これは矛盾ではなくて、上記、一位の極とは、原点に近づけは、限りなく無限遠点に近づく、あるいは発散するという、従来の厳格議論はそのままであるが、ゼロ除算は、原点自身では、数としてゼロの値をきちんとして取っているということである。 この区別をきちんとすれば、従来の概念とゼロ除算はしっかりとした位置づけができる。 近づく値とそこにおける値の区別である。
以 上
0 件のコメント:
コメントを投稿