2017年7月23日日曜日

What is a calculas method?

What is a calculas method?

 

While many people believe that calculus is supposed to be a hard math course, most don't have any idea of what it is about. The good news is that if you remember your algebra and are reasonably good at it then calculus is not nearly as difficult as its reputation supposes. This article attempts to explain just what calculus is about--where it came from and why it is important.
First, a little history leading up to the discovery of calculus, or its creation, depending on your philosophy.
The word "calculus" comes from "rock", and also means a stone formed in a body. People in ancient times did arithmetic with piles of stones, so a particular method of computation in mathematics came to be known as calculus.
Arithmetic and geometry are the two branches of mathematics originating in ancient times. Mathematicians attempted to do algebra in those days but lacked the language of algebra, namely the symbols we take for granted such as +, -, X, ÷ and =. Much of the world, including Europe, also lacked an efficient numbering system such as that developed in the Hindu and Arabic cultures. (Try long division, for example, using Roman numerals.) Algebra as a branch of mathematics can be said to date to around 825 A.D. when a Persian, al-Khwarizmi, wrote the earliest known algebra text. (The word "algebra" comes from a Persian word in the title, "al'jabr", which means "to restore". The English term for a systematic mathematical method, algorithm, was derived from al-Khwarizmi's name by way of a Latin translation.)
For over seven hundred years algebra and geometry coexisted but were not well linked. Geometry describes the physical nature of our world while algebra is a sophisticated tool for mathematical analysis. Due to the Greek influence on Persian (or Islamic) mathematics geometry was successfully used to verify some of their algebraic methods, but there was no known way to harness the analytical power of algebra to analyze geometry. In the late 1500's the French philosopher and mathematician, Rene Descartes, had a profound breakthrough when he realized he could describe position on a plane using a pair of numbers associated with a horizontal axis and a vertical axis. By describing, say, the horizontal measurement withx's and the vertical measurement with y's, Descartes was able to give geometric objects such as lines and circles representation as algebraic equations. This seminal construction of what we call graphs is, arguably, the cornerstone without which our modern technology would not be possible. Descartes thus united the analytical power of algebra with the descriptive power of geometry into a branch of mathematics he called analytic geometry. This term is sometimes seen in textbooks with titles such as "Calculus with Analytic Geometry."
Descartes, as philosopher, is also the author of the famous line, "Cogito, ergo sum," or, "I think, therefore I am." He was attempting to settle an argument about whether we exist independently of God's imagination.
The next major breakthrough in mathematics was the discovery (or creation) of calculus around the 1670's. Sir Isaac Newton of England, and a German, Gottfried Wilhelm Leibnitz, deserve equal credit for independently coming up with calculus. Each accused the other of plagiarism for the rest of their lives, but for what it's worth, the world largely adopted Leibnitz's calculus symbols. Calculus did allow Newton to establish physics principles which remained uncontested until the year 1900 and which in our ordinary scale world still suffice to explain physics to excellent accuracy.
Calculus was developed out of a need to understand continuously changing quantities. Newton, for example, was trying to understand the effect of gravity which causes falling objects to constantly accelerate. The speed of an object increases constantly every split second as it falls. How can one, for example, determine the speed of a falling object at a frozen instant in time, such as its speed when it strikes the ground? No mathematics prior to Newton and Leibnitz's time could answer such a question, which appeared to amount to the impossibility of dividing zero by zero. The solution to this type of issue came to be known as the derivative. Derivatives are slopes of particular lines called tangent lines, and the reader may recall that slope of a line is a concept from Descartes' graphing.
Differential calculus is one side of calculus, the part concerned with continuous change and its applications. By understanding derivatives the student has at his or her disposal a very powerful tool for understanding the behavior of mathematical functions. Importantly, this allows us to optimize functions, which means to find their maximum or minimum values, as well as to determine other valuable qualities describing functions. Real-world applications are endless, but some examples are maximizing profit, minimizing stress, maximizing efficiency, minimizing cost, finding the point of diminishing returns, and determining velocity and acceleration.
The other primary side of calculus is integral calculus. Integration is a process which, simplistically, resembles the reverse of differentiation. This amounts to efficiently adding infinitely many infinitely small numbers. This allows us, in theory, to find the area of any planar geometric shape, or the volume of any geometric solid. But the applications of integration, like differentiation, are also quite extensive.
Until the mid-1800's mathematicians were content to use calculus-style computations under the heuristic evidence that they seemed to work very well. This was a fragile house of cards increasingly based on the faith that what they saw would always work. Largely under the influence of Karl Friederich Gauss (1777 - 1855) the mathematical world gradually returned to the ancient Greek ideal of mathematical proof by logic found in their [Euclidean] geometry. Gauss' student, Bernhard Riemann (1826 - 1866), and some of his contemporaries established a rigorous logical foundation for calculus now known as real analysis. Their definitions and theorems greatly influenced the language and teaching of calculus today.
It was only through calculus and the rigorous treatment it received in the 19th century that mankind could really begin to grasp the difficult concepts of infinity and infinitesimal. Calculus also completes the link of algebra and geometry by providing powerful analytical tools that allow us to understand algebra functions through their related geometry.
We now realize that great thinkers in ancient times ran into calculus concepts. Archimedes used calculus thinking, for example, to establish the area of a circle and the volume of a sphere, borrowing his methods of exhaustion--essentially limits--from Eudoxus of Cnidus. Zeno of Elea proposed four famous paradoxes which caused Aristotle, centuries later, to grapple with calculus ideas in his failed attempt to resolve them.
Calculus, by tradition, is usually a one-year course (four quarters or three semesters). The first half is concerned with learning and applying the techniques of differentiation and integration. The second half is concerned with further applications, using both sides of calculus, to vectors, infinite sums, differential equations and a few other topics. The last term of calculus is sometimes known as multivariate calculus, which is an application of calculus to three or more dimensions.
Calculus provides the foundation to physics, engineering, and many higher math courses. It is also important to chemistry, astronomy, economics and statistics. Medical schools and pharmacy schools use it as a screening tool to weed out weaker aspirants under the assumption that people who are unwilling or unable to handle the rigors of calculus stand little chance of surviving the hard work of studying medicine or pharmacology.
There are three main facets to being a successful calculus student:
--You must be good at algebra skills. It is not enough to have passed algebra, you must also remember what you learned! If you have to relearn algebra while learning calculus then the burden can overwhelm.
--Memorization of computational patterns is not enough. Some people can get by in algebra by memorization without understanding. In calculus it is quite necessary to pay attention and learn the concepts in order to apply them. This is learning at a mature level.
--You must be dedicated to study. Don't skip any classes except for the most dire reasons. Take notes. Above all, practice lots of problems, without which those concepts will not be reinforced and learned.
Students who enjoy intellectual stimulation and the power of abstract thinking tend to enjoy the beauty of calculus the most, but there is much to appreciate for those who are looking for powerful tools which which to understand and create in the physical world.
Finally, a good reason to take calculus is that you will be more competitive and have more career opportunities. Many people avoid demanding challenges; those willing to face them head on tend to go much further in life.https://www.nextgurukul.in/nganswers/ask-question/answer/What-is-a-calculas-method/Motion-in-a-straight-line/136931.htm

とても興味深く読みました:

再生核研究所声明 375 (2017.7.21):ブラックホール、ゼロ除算、宇宙論

本年はブラックホール命名50周年とされていたが、最近、wikipedia で下記のように修正されていた:
名称[編集]
"black hole"という呼び名が定着するまでは、崩壊した星を意味する"collapsar"[1](コラプサー)などと呼ばれていた。光すら脱け出せない縮退星に対して "black hole" という言葉が用いられた最も古い印刷物は、ジャーナリストのアン・ユーイング (Ann Ewing) が1964年1月18日の Science News-Letter の "'Black holes' in space" と題するアメリカ科学振興協会の会合を紹介する記事の中で用いたものである[2][3][4]。一般には、アメリカ物理学者ジョン・ホイーラーが1967年に "black hole" という名称を初めて用いたとされるが[5]、実際にはその年にニューヨークで行われた会議中で聴衆の一人が洩らした言葉をホイーラーが採用して広めたものであり[3]、またホイーラー自身は "black hole" という言葉の考案者であると主張したことはない[3]https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%A9%E3%83%83%E3%82%AF%E3%83%9B%E3%83%BC%E3%83%AB

世界は広いから、情報が混乱することは よく起きる状況がある。ブラックホールの概念と密接な関係のあるゼロ除算の発見(2014.2.2)については、歴史的な混乱が生じないようにと 詳しい経緯、解説、論文、公表過程など記録するように配慮してきた。
ゼロ除算は簡単で自明であると初期から述べてきたが、問題はそこから生じるゼロ除算算法とその応用であると述べている。しかし、その第1歩で議論は様々でゼロ除算自身についていろいろな説が存在して、ゼロ除算は現在も全体的に混乱していると言える。インターネットなどで参照出来る膨大な情報は、我々の観点では不適当なものばかりであると言える。もちろん学術界ではゼロ除算発見後3年を経過しているものの、古い固定観念に囚われていて、新しい発見は未だ認知されているとは言えない。最近国際会議でも現代数学を破壊するので、認められない等の意見が表明された(再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告)。そこで、初等数学から、500件を超えるゼロ除算の証拠、効用の事実を示して、ゼロ除算は確定していること、ゼロ除算算法の重要性を主張し、基本的な世界を示している。
ゼロ除算について、膨大な歴史、文献は、ゼロ除算が神秘的なこととして、扱われ、それはアインシュタインの言葉に象徴される:

Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (Gamow, G., My World Line (Viking, New York). p 44, 1970).

ところが結果は、実に簡明であった:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

しかしながら、ゼロ及びゼロ除算は、結果自体は 驚く程単純であったが、神秘的な新たな世界を覗かせ、ゼロ及びゼロ除算は一層神秘的な対象であることが顕になってきた。ゼロのいろいろな意味も分かってきた。 無限遠点における強力な飛び、ワープ現象とゼロと無限の不思議な関係である。アリストテレス、ユークリッド以来の 空間の認識を変える事件をもたらしている。 ゼロ除算の結果は、数理論ばかりではなく、世界観の変更を要求している。 端的に表現してみよう。 これは宇宙の生成、消滅の様、人生の様をも表しているようである。 点が球としてどんどん大きくなり、球面は限りなく大きくなって行く。 どこまで大きくなっていくかは、 分からない。しかしながら、ゼロ除算はあるところで突然半径はゼロになり、最初の点に帰するというのである。 ゼロから始まってゼロに帰する。 ―― それは人生の様のようではないだろうか。物心なしに始まった人生、経験や知識はどんどん広がって行くが、突然、死によって元に戻る。 人生とはそのようなものではないだろうか。 はじめも終わりも、 途中も分からない。 多くの世の現象はそのようで、 何かが始まり、 どんどん進み、そして、戻る。 例えばソロバンでは、願いましては で計算を始め、最後はご破産で願いましては、で終了する。 我々の宇宙も淀みに浮かぶ泡沫のようなもので、できては壊れ、できては壊れる現象を繰り返しているのではないだろうか。泡沫の上の小さな存在の人間は結局、何も分からず、われ思うゆえにわれあり と自己の存在を確かめる程の能力しか無い存在であると言える。 始めと終わり、過程も ようとして分からない。

ブラックホールとゼロ除算、ゼロ除算の発見とその後の数学の発展を眺めていて、そのような宇宙観、人生観がひとりでに湧いてきて、奇妙に納得のいく気持ちになっている。

以 上

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…

再生核研究所声明 374 (2017.7.20)微分方程式論における不完全性と問題

現在の学部レベルの微分方程式の教科書を広く参照して、その理論、扱いの不備が目立つので、項目に分けて具体的に指摘しておきたい。まずは大局、要点は次から。

再生核研究所声明366(2017.5.16)微分方程式論の不備 ― 不完全性

― ところが、数学の多くの著書のうちでも、微分方程式論では、現在の版でも相当に隙や論理の飛躍、扱いの不統一さなど、数学書としては 他の分野の著書に比べて ちぐはぐ、隙だらけに見えて来た。微分方程式論は不完全な状況であると言える。このことを簡潔に、具対的に指摘したい。未知の相当な世界にも触れたい。
先ず、微分方程式の定義である。普通は導関数を含む方程式を微分方程式と称する。このとき導関数とは何だろうか。関数に微分係数を対応させて、微分によって導かられた関数が導関数であるから、微分方程式には関数が定義されていなくてはならない。普通は1変数関数ならばxの関数 y=f(x) などと考え、その導関数を含む方程式を考えるだろう。例として考えられるのは、原点を中心とする半径aの円群が満たす例として多くの教科書の初期に 微分方程式の例が挙げられる。このとき、円はy軸に平行な接線を持つから その点で微分係数は存在しないと考えられる。そのままでは円群の満たす微分方程式とは言えず、微分方程式を満たさない点が存在することになってしまう。数学としては初めから、格好が悪いと言える。多くの微分方程式でこのことは広く問題になる。― ここの説明を上手くするために 都合の悪いところで、独立変数と従属変数を変えて、そこで考えれば良いという意見を頂いたが、少し人為的、最初の議論としてはあまり良いとは言えないのではないだろうか。
ところがゼロ除算で考えると、何とy軸に平行な接線の接点で、関数は微分可能で、微分係数の値、勾配はゼロであることが ゼロ除算の拓いた重要な知見、結果である。すると、微分方程式 dy/dx= - x/y は至るところで、円によって満たされるとなる。念のため、(a,0) で (dy/dx)(a)= - a/0=0 である。
この初歩的な結果は、微分方程式論に大きな影響を与える。解析関数の孤立特異点で、自然な意味で、値と微分係数を定義できるから、微分方程式を孤立特異点そのものでも考えることができるという、広い世界が拓かれてくる。微分方程式論を孤立特異点まで含めて議論する広い世界である。そもそも従来は、孤立特異点の孤立点を除いた近傍で数学を議論してきた。孤立特異点そのところでは数学を考えて来なかったのである。
ゼロ除算が拓いたゼロ除算算法は 解析関数の孤立特異点で有限確定値を与え、それらが自然な意味を持つから、微分方程式と微分方程式の解の孤立特異点での値の性質を調べる雄大な分野が存在する。
要するに、数理科学の数式で、分母がゼロになる膨大な数式で、ゼロ除算算法で 孤立特異点で考える新しい世界が出現し、その影響は甚大であると考えられる。
もちろん、偏微分方程式論でも同様であるが、多変数のゼロ除算の定義から既に多変数解析関数論における難解な問題に繋がっていて、殆ど未知の世界である。
ゼロ除算算法の微分方程式論における影響は広範で、甚大であると考えられる。学術書の全般的な書き換えが求められている。
以 上
そこで、さらに項目で具体的に述べよう:

1) 微分方程式の解が考えているところで全く解析的な関数なのに、微分方程式の表現で、従来の数学では説明のつかないような特異点を有する微分方程式が沢山現れている。そのような特異点で、ゼロ除算算法で解釈すれば微分方程式は考えているところで全体的に説明ができて意味を持つこととなる。
2) 微分方程式の 一つの係数がゼロになった時の解と元の解は関係があり、一般的な解から、特別に一つの係数がゼロになった時の解が出ると考えられるが、簡単に出る場合もあるが、従来の数学で、導かれそうもない場合に、ゼロ除算算法で沢山、決まった方法で導かれる現象が発見された。
3) 外力の入れ方で共振を起こす場合の結果が、共振を起こさない場合から、ゼロ除算算法で自動的に導かれる。
4) 従来、実数空間で考えた微分方程式の解が、孤立特異点で切れて解が切れて、接続できないとの記述が見られるが、これは、孤立特異点も含めて微分方程式、そしてその解が考えられる。(ポントリャーゲンや古屋先生の本に特異点から先、解が伸びないで切れているという記述がある。)
5) 微分方程式の任意定数の扱いで e^C を任意定数で置き換えるとき、負やゼロを取らないと考えられているので、いちいちそれらの場合も良いと理由を付けて説明しているが, ゼロ除算で発見された値を考えることで、いちいち断る必要はなくなる。\log 0=0で, e^0 が2つの値、1とゼロの2つの値をとること。
6) 例えばある放物線の傾きmの接線の方程式 y=mx + p/m, ある微分方程式の一般解y = cx + \frac{1}{c} などで、m=0や c=0 で、y=0としてそのまま意味を持つ。ゼロ除算は広く成り立っている。
7) たとえば、y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx}, の解
y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.
において、 $k = -3$,の場合の解がゼロ除算算法で自動的に自然に解が求まる。

以 上

再生核研究所声明3712017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

ゼロ除算については、既に相当な世界を拓いていると考えるが、世の理解を求めている状況下で、理解と評価、反響にも関心がある:

ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響があり、さらに哲学、宗教、文化への大きな影響がある。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、数学者ばかりではなく、人類の名誉にも関わることである。実際、ゼロ除算の歴史は 止むことのない闘争の歴史とともに人類の恥ずべき人類の愚かさの象徴となるだろう。世間ではゼロ除算について不適切な情報が溢れていて 今尚奇怪で抽象的な議論によって混乱していると言える。― 美しい世界が拓けているのに、誰がそれを閉ざそうと、隠したいと、無視したいと考えられるだろうか。我々は間違いを含む、不適切な数学を教えていると言える: ― 再生核研究所声明 41: 世界史、大義、評価、神、最後の審判 ―。
地動説のように真実は、実体は既に明らかである。 ― 研究と研究成果の活用の推進を 大きな夢を懐きながら 要請したい。 研究課題は基礎的で関与する分野は広い、いろいろな方の研究・教育活動への参加を求めたい。素人でも数学の研究に参加できる新しい初歩的な数学を沢山含んでいる。ゼロ除算は発展中の世界史上の事件、問題であると言える (再生核研究所声明325(2016.10.14) ゼロ除算の状況について ー 研究・教育活動への参加を求めて)

そのような折り、ISAAC マカオ国際会議では、招待、全体講演を行い、ゼロ除算について、触れ、 論文も発表したものの(Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications -Plenary Lectures: Isaac 2015, Macau, China.  (Springer Proceedings in Mathematics and Statistics, Vol. 177) Sep. 2016  305pp.(Springer)  
今回頭記の200名を超える大きな国際会議で、ゼロ除算と微分方程式について真正面からゼロ除算の成果を発表することができた。
ゼロ除算には、世界史と世界観がかかっているとの認識で、この国際会議を記念すべきものとするようにとの密かな望みを抱いて出席した。そこで、簡単に印象など記録として纏めて置きたい。
まずは、3日目 正規の晩餐会が開かれる恵まれた日に 最初に全体講演を行った。主催者の学生が多数出席されたり、軍の専属カメラマンが講演模様を沢山写真に収めていた。図版を用意し、大事な点はOHPで講演中図示していた。用意した原稿は良く見えるように配慮したので、全貌の理解は得られたものと考えられる。 結びには次のように述べ、示した。宣言文の性格を持たせるとの意思表示である:
{\bf The division by zero is uniquely and reasonably determined as $$1/0=0/0=z/0=0$$ in the natural extensions of fractions. \\
We have to change our basic ideas for our space and world.\\
We have to change our textbooks and scientific books on the division by zero.\\
Thank you for your attention.}

講演に対して、アラブ首長国の教授が、現代数学を破壊するので、全て認められないとの発言があった。後で、送迎中のバスの中で、とんちんかんな誤解をしている教授がいることが分かった。過去にも経験済みであるが、相当に二人共 感情的に見えた ― それはとんでもないという感じである。閉会式に参加者を代表して謝辞を述べられたギリシャの教授が、画期的な発見で、今回の国際会議の最大の話題であったと述べられたが、要点について話したところ、要点の全てについて深い理解をしていることが確認された。さらにゼロ除算の著書出版の具体的な計画を進めたいという、時宜を得た計画が相談の上、出来た。
そこで、講演原稿と図版を出席者たちにメールし、助言と意見を広く求めている。理解できないと述べられた人にも 要求に応じて送っているが、現在までのところ連絡、返答がない。
主催者から、50カ国以上から200名以上の出席者があったと述べられたが、そのような国際会議で、招待、全体講演を行うことができたのは 凄く記念すべきこととして、出版される会議録、論文集の出版に最善をつくし、交流ができた人々との交流を積極的に進めていきたい。尚、正規の日本人参加者は8名であった。
ゼロの発見国インドからは6名参加していたので、1300年も前に0/0=0が四則演算の創始者によって主張されていた事実を重要視してその状況を説明し、特に対話を深め、創始者に関する情報の収集についての協力をお願いした。ゼロ除算について理解した、分かったと繰り返し述べていたが、どうも感情が伴わず、心もとない感じであった。若いカナダの女性に印象を伺ったところ、沢山の具体例を挙げられたので、認めざるを得ない、内容や意義より驚きの感じで、それが講演に対する全体的な反響の状況を表していると考えられる。
歴史は未来によって作られる。今回の国際会議の意義は 今後の研究の進展で左右されるものと考える。しかしながら十分な記録は既に残されていると考えている。

以 上

再生核研究所声明 373 (2017.7.17) 高木貞治 「解析概論」の改変構想 

日本には、解析学の基礎全般について解説された 解析学の聖書とみなされるような古典的な名著がある。現在手にしているのは、1963年1月発行の改訂第3版のものであるが、学生時代から、何と54年も近くに存在していて、今でも参照している。
日本の学部教育における、微積分学の模範となり、その後の解析学のカリキュラムの基礎、標準を与えていると考えられる。多くの理系専攻者の思い出の1冊ではないだろうか。476ページの大判も大きな存在感を持ち、風格も十分である。美しい文体や記述は多くの人に感銘を与えてきている。
誠に畏れ多いことであるが、この完全性を有する古典的な著書内容に ある大きな進化させるべき数学があり、数学をより美しく完全にすべき構想を述べたい。誠に畏れ多いことであるが、数学の発展には必然性があり、数学の姿は人類の思惑や予断や偏見を越えて実在する存在であり:


下記構想は 既に必然的であると考える:

まず、結果位置づけが明瞭である陰関数についてである。陰関数の存在定理における陰関数の陽な表現定理、理論が確立された。このような理論、結果は数学として基本的であり内容も美しいので、解析学で広く採用、触れられるべきであると考えられる。骨格は次の著書の本文と付録にコンパクトに述べられている:

S. Saitoh and Y. Sawano, Theory of Reproducing Kernels and Applications, Developments in Mathematics {\bf 44}, Springer (2016).

次はゼロ除算の発見による影響である。立体射影における修正、無限遠点がゼロで表されること、円の中心の円に関する鏡像が円の中心であること。これら古典的な数学に間違いがあり、根本的な修正が要求される。基本は、下記の状況からの修正、補充、完全化である:

1. ゼロ除算未定義は自然な意味での拡張で、可能で任意の複素数zに対してz/0=0であること。
もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学等の多くの公式における分数は、拡張された分数の意味を有していることが広く認められた。ゼロ除算を含む簡単で、自然な体の構造が与えられている。
2. いわゆる複素解析学で無限遠点は1/0=0で、複素数0で表されること。
3. 円に関する中心の鏡像は無限遠点ではなくて、中心それ自身であること。
これら超古典的な結果に間違いが存在する。
4. 孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。
5. x,y 直交座標系で y軸の勾配はゼロであること;  \tan (\pi/2) =0.
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、そこで意味のある広い世界。多くの応用。
10.     従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。多くの公式の変更。
11.     微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有すること、微分係数が意味をもつことから。微分方程式論には大きな欠陥が存在する。
12.     図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.     確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による世界の構造の統一的な説明。物理学などへの応用。
15.\log 0 =0 の発見と関連する数学。

微積分学、線形代数学、解析幾何学、初等幾何学、微分方程式 複素解析などは相当な修正が要求されていると考えられる。それを上手く解析概論に活かしての改変は 既に歴史的必然であると考えられる。

                                                                        以 上



0 件のコメント:

コメントを投稿