再生核研究所声明 374 (2017.7.20):微分方程式論における不完全性と問題
現在の学部レベルの微分方程式の教科書を広く参照して、その理論、扱いの不備が目立つので、項目に分けて具体的に指摘しておきたい。まずは大局、要点は次から。
再生核研究所声明366(2017.5.16)微分方程式論の不備 ― 不完全性
― ところが、数学の多くの著書のうちでも、微分方程式論では、現在の版でも相当に隙や論理の飛躍、扱いの不統一さなど、数学書としては 他の分野の著書に比べて ちぐはぐ、隙だらけに見えて来た。微分方程式論は不完全な状況であると言える。このことを簡潔に、具対的に指摘したい。未知の相当な世界にも触れたい。
先ず、微分方程式の定義である。普通は導関数を含む方程式を微分方程式と称する。このとき導関数とは何だろうか。関数に微分係数を対応させて、微分によって導かられた関数が導関数であるから、微分方程式には関数が定義されていなくてはならない。普通は1変数関数ならばxの関数 y=f(x) などと考え、その導関数を含む方程式を考えるだろう。例として考えられるのは、原点を中心とする半径aの円群が満たす例として多くの教科書の初期に 微分方程式の例が挙げられる。このとき、円はy軸に平行な接線を持つから その点で微分係数は存在しないと考えられる。そのままでは円群の満たす微分方程式とは言えず、微分方程式を満たさない点が存在することになってしまう。数学としては初めから、格好が悪いと言える。多くの微分方程式でこのことは広く問題になる。― ここの説明を上手くするために 都合の悪いところで、独立変数と従属変数を変えて、そこで考えれば良いという意見を頂いたが、少し人為的、最初の議論としてはあまり良いとは言えないのではないだろうか。
ところがゼロ除算で考えると、何とy軸に平行な接線の接点で、関数は微分可能で、微分係数の値、勾配はゼロであることが ゼロ除算の拓いた重要な知見、結果である。すると、微分方程式 dy/dx= - x/y は至るところで、円によって満たされるとなる。念のため、(a,0) で (dy/dx)(a)= - a/0=0 である。
この初歩的な結果は、微分方程式論に大きな影響を与える。解析関数の孤立特異点で、自然な意味で、値と微分係数を定義できるから、微分方程式を孤立特異点そのものでも考えることができるという、広い世界が拓かれてくる。微分方程式論を孤立特異点まで含めて議論する広い世界である。そもそも従来は、孤立特異点の孤立点を除いた近傍で数学を議論してきた。孤立特異点そのところでは数学を考えて来なかったのである。
ゼロ除算が拓いたゼロ除算算法は 解析関数の孤立特異点で有限確定値を与え、それらが自然な意味を持つから、微分方程式と微分方程式の解の孤立特異点での値の性質を調べる雄大な分野が存在する。
要するに、数理科学の数式で、分母がゼロになる膨大な数式で、ゼロ除算算法で 孤立特異点で考える新しい世界が出現し、その影響は甚大であると考えられる。
もちろん、偏微分方程式論でも同様であるが、多変数のゼロ除算の定義から既に多変数解析関数論における難解な問題に繋がっていて、殆ど未知の世界である。
ゼロ除算算法の微分方程式論における影響は広範で、甚大であると考えられる。学術書の全般的な書き換えが求められている。
以 上
そこで、さらに項目で具体的に述べよう:
1) 微分方程式の解が考えているところで全く解析的な関数なのに、微分方程式の表現で、従来の数学では説明のつかないような特異点を有する微分方程式が沢山現れている。そのような特異点で、ゼロ除算算法で解釈すれば微分方程式は考えているところで全体的に説明ができて意味を持つこととなる。
2) 微分方程式の 一つの係数がゼロになった時の解と元の解は関係があり、一般的な解から、特別に一つの係数がゼロになった時の解が出ると考えられるが、簡単に出る場合もあるが、従来の数学で、導かれそうもない場合に、ゼロ除算算法で沢山、決まった方法で導かれる現象が発見された。
3) 外力の入れ方で共振を起こす場合の結果が、共振を起こさない場合から、ゼロ除算算法で自動的に導かれる。
4) 従来、実数空間で考えた微分方程式の解が、孤立特異点で切れて解が切れて、接続できないとの記述が見られるが、これは、孤立特異点も含めて微分方程式、そしてその解が考えられる。(ポントリャーゲンや古屋先生の本に特異点から先、解が伸びないで切れているという記述がある。)
5) 微分方程式の任意定数の扱いで e^C を任意定数で置き換えるとき、負やゼロを取らないと考えられているので、いちいちそれらの場合も良いと理由を付けて説明しているが, ゼロ除算で発見された値を考えることで、いちいち断る必要はなくなる。\log 0=0で, e^0 が2つの値、1とゼロの2つの値をとること。
6) 例えばある放物線の傾きmの接線の方程式 y=mx + p/m, ある微分方程式の一般解y = cx + \frac{1}{c} などで、m=0や c=0 で、y=0としてそのまま意味を持つ。ゼロ除算は広く成り立っている。
7) たとえば、y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx}, の解
y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.
において、 $k = -3$,の場合の解がゼロ除算算法で自動的に自然に解が求まる。
以 上
2017.7.19.06:49 声明の形に纏める。
2017.7.19.09:10 朝から晴れ。
2017.7.19.10:14 盛夏の感じ。
2017.7.19.14:38
2017.7.19.19:26
2017.7.19.22:36
2017.7.20.05:42 完成できる。 曇り。
2017.7.20.06:22 完成、公表
The division by zero is uniquely and reasonably determined as
1/0=0/0=z/0=0 in the natural extensions
of fractions. We have to change our basic ideas for our space and world
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of
Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1
-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
0 件のコメント:
コメントを投稿